
A Machine Learning Approach to Model Interaction Effects:
Development and Application to Alcohol Deoxyfluorination
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ABSTRACT: The application of machine learning (ML) techniques
to model high-throughput experimentation (HTE) datasets has seen a
recent rise in popularity. Nevertheless, the ability to model the
interplay between reaction components, known as interaction effects,
with ML remains an outstanding challenge. Using a simulated HTE
dataset, we find that the presence of irrelevant features poses a strong
obstacle to learning interaction effects with common ML algorithms.
To address this problem, we propose a two-part statistical modeling
approach for HTE datasets: classical analysis of variance of the
experiment to identify systematic effects that impact reaction yield
across the experiment followed by regression of individual effects
using chemistry-informed features. To illustrate this methodology, we
use our previously published alcohol deoxyfluorination dataset comprising 740 reactions to build a compact, interpretable
generalized additive model that accounts for each significant effect observed in the dataset. We achieve a sizeable performance boost
compared to our previously published random forest model, reducing mean absolute error from 18 to 13% and root-mean-squared
error from 22 to 17% on a newly generated validation set. Finally, we demonstrate that this approach can facilitate the generation of
new mechanistic hypotheses, which, when probed experimentally, can lead to a deeper understanding of chemical reactivity.

■ INTRODUCTION
The application of data-driven modeling to understand
reactivity trends, predict reaction outcomes, and select optimal
reaction conditions is of significant interest to the synthetic
community.1−3 For decades, chemists have used linear
regression to study the impact of electronic and steric effects
on reaction outcomes in the form of Hammett plots.4 More
recently, multivariate linear regression (MVLR) has been used
to model the impact of a systematically varied reaction
component (e.g., a catalyst) on the reaction outcome.5

Whereas such studies generally make use of compact, de
novo generated datasets varying a single reaction component,
reaction databases such as Reaxys or the United States Patent
and Trademark Office (USPTO)6,7 contain a wealth of data on
many reactions and variations of reaction components.
However, reaction databases tend to bias toward high-yielding
reactions, may be sparse or incomplete with respect to
conditions or substrates of interest, and may lack internal
consistency across reaction parameters (i.e., temperature,
concentration, and stir rate).8 These limitations notwithstand-
ing, important advances have been made in reaction outcome
and condition prediction using these databases.9−11

As an alternative, high-throughput experimentation (HTE)
allows for rapid generation of relatively large datasets (up to a
few thousand reactions) where multiple reaction components
are systematically varied.12 These datasets typically include a
diverse set of substrates and conditions of practical interest,

while other variables are kept fixed. HTE datasets can be used
to model reactivity trends, such as identifying substrate classes
that tend to be higher or lower yielding than others. More
importantly, one can also model differences in performance
between reagents across the substrate scope, such as conditions
that are privileged for specific substrate classes, or conditions
that are more selective for a particular product. This interplay
between reaction components, referred to herein as interaction
effects, is crucial for understanding the intricacies of reactivity.

Multiple studies�including a few of our own�have built
machine learning (ML) models for yield and selectivity
prediction from HTE datasets using chemically informed
features and/or molecular fingerprints.13−18 However, these
models provide only minor improvements over dummy-
encoded models, and there is no evidence that they can
capture interaction effects.19−22 This challenge likely arises as a
consequence of the inability of ML models to consider the
experimental design and structure of HTE datasets.
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In this manuscript, we first identify the presence of irrelevant
features as a major obstacle to ML modeling of interaction
effects in a simulated HTE scenario. Inadequate featurization
has previously been identified as a potential obstacle to
reactivity modeling,23 but we re-evaluate it in the context of
HTE. We then propose an alternative approach for modeling
interactions, wherein the HTE dataset is analyzed as a control
vs treatment experiment, thus explicitly taking the dataset
design into account. We use ANOVA24�a statistical

technique that separates observed variance in outcomes into
systematic effects (effects that are unlikely to occur due to
chance) and random effects. Using ANOVA, we identify all
main and interaction effects that are significant within the
experiment. Finally, we model individual effects with
descriptor-based linear and nonlinear regressions, leading to
an interpretable and generalizable model.
Challenges of Modeling Interaction Effects. Complex

functions can be represented with ML models, but whether

Figure 1. (A) Simulated example of a 2-factor HTE dataset with a random main effect and a substrate-dependent interaction of the same
magnitude. (B) Validation R2 of the interaction component as a function of the training sample size, the relative ratio of interaction and main effects
(i/m), and the quality of the featurization. An R2 value close to 1 represents successful learning, while an R2 value close to 0 represents no learning.
(C) A sample experiment with 30 substrates for which the interaction effect is twice the size of the main effect is used to train a random forest
model. The trained model was evaluated on 100 additional substrates, and the interaction between reaction conditions was visualized.
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they can be learned from available data is an outstanding
question.25 To study the ability of ML to learn interaction
effects from HTE data, we simulated an HTE dataset
comprising 3 hypothetical solvents (A, B, and C) and between
10 and 50 hypothetical substrates. For the sake of the
simulation, we made several assumptions about this dataset.
First, we arbitrarily considered the yield in solvent A to be the
main effect, though other choices (e.g., average yield over all
solvents) could also be used. With this choice of the main
effect, the interaction effect is the yield differential between
solvent A and solvents B and C. This interaction effect was
assumed to depend on a single and known property of the
substrate, dipole moment μ, via the function f(μ) (eq 1). We
simulated the difference in response between solvents B and A
as a linear function of μ and the difference between C and A as
a sinusoidal function of μ (Figure 1A), though in a real HTE
dataset, these functions may not be as clearly defined.

= +y y f ( )B,C A B,C (1)

Taking these assumptions, we evaluated a selection of ML
algorithms (k-nearest neighbors (kNN),26 random forest,27

and XGBoost28) for their ability to learn the interactions. We
varied the following properties of the simulated HTE dataset:

a) the number of substrates (10, 20, 30, 40, and 50),
b) the relative size of the interaction effect vs the main

effect (i/m = 10, 2, 1, and 0.5), and
c) the size and quality of the substrate featurization (using

the relevant descriptor μ and adding 0−50 irrelevant
features).

Overall, we found that the model is highly sensitive to the
presence of unrelated “random” features. When the substrate
featurization contains no random features, the learning
succeeds (Figure 1B, no. of random features = 0). In the
presence of random features, the model’s ability to learn
depends on the dataset size and the relative magnitude of
effects. When the interaction effect dominates the main effect,
both random forest (RF) and XGBoost algorithms can sift
through the random features and still learn the interaction
signal (Figure 1B, i/m = 10 and 2); as the interaction effect
becomes less dominant, even a handful of random features
prevent learning (Figure 1B, i/m = 1 and 0.5). In the latter
case, the relative differences between solvents A, B, and C are
lost. As illustrated in Figure 1C, with 30 substrates and an
interaction effect twice as large as the main effect, the presence
of 5 random features largely precludes capturing the functional
shape of the interaction with RF. Therefore, chance
correlations with random features, a well-known nuisance in
linear modeling,29 confuse the learning process. The simulation
study suggests that using broad molecular featurization�
which is certain to involve at least some number of irrelevant
features�with commonplace ML algorithms is unlikely to
provide a useful interaction model. Therefore, for a deeper
understanding of interdependencies within HTE datasets, it is
necessary to develop a modeling approach that is independent
of algorithmic feature selection.

■ RESULTS AND DISCUSSION
HTE Statistical Modeling. With the goal of constructing a

model that better “learns” underlying interactions in HTE
datasets, we developed a novel modeling approach targeting
interaction effects. Our proposed workflow is summarized in
Figure 2. Though we focus on one dataset in this study, the

general workflow can in theory be applied to any full factorial
HTE dataset of interest:

1. Analyze the dataset with ANOVA and determine which
reaction components have a significant impact on the
yield. See the SI for a detailed discussion of ANOVA
usage guidelines.

2. Construct a one-hot-encoded GAM model, M0, that
includes each of the effects deemed to be significant in
the ANOVA analysis.

3. For individual effects in M0, replace the explicit labels
with functions of chemical features using ML. One key
advantage of GAM models is their ability to model
nonlinear data while retaining interpretability. In our
study, we employ both univariate linear and nonlinear
regressions; however, any type of model can be
considered. Importantly, selected effects can be
modeled, while other effects of lesser interest can
remain one-hot-encoded models.

4. Evaluate the newly constructed ensemble of models
against an external test set.

From the few publicly available HTE datasets,30 we chose a
three-component, full factorial alcohol deoxyfluorination

Figure 2. Our proposed modeling workflow involves ANOVA
analysis, baseline and chemically informed model construction, and
external validation. This figure depicts a combinatorial dataset of a
hypothetical reaction between A and B.
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dataset reported by our lab in 2018 as a case study for
modeling.14 The dataset comprises 37 alcohols, including
reactive primary, secondary, and benzylic alcohols, as well as
unreactive strained cyclic alcohols; 5 sulfonyl fluorides of
varying reactivity correlated to the leaving group ability of the

corresponding sulfonate ester; and 4 strong amidine/
guanidine/phosphazene bases of varying steric hindrance
(Figure 3). In the original study, the dataset was used to
construct an RF model for yield prediction using a
combination of chemically informed features and categorical

Figure 3. Previously published alcohol deoxyfluorination high-throughput experimentation dataset. Reproduced with permission from ref 14.
Copyright 2018 American Chemical Society.
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features describing the different classes of alcohols. Though the
model was able to make reasonable predictions for the yields
for some out-of-sample alcohols, when evaluated with leave-
one-alcohol-out (LOAO) validation, the root-mean-squared
error (RMSE) provided by RF did not surpass the RMSE
obtained with a one-hot-encoded model that did not use any
features.22 Therefore, the RF model was unable to successfully
learn the features pertinent to alcohol reactivity. Herein, we
seek to apply our proposed workflow to construct a model that
can not only make more accurate yield predictions but also
provide mechanistic insight into interaction effects within the
dataset.

The first step in our workflow is the analysis of the whole
experiment with three-way ANOVA to identify which reaction
components and which of their interactions significantly
impact the yield. For this dataset, the significance of the
main (single component) and two-way interaction (combina-
tions of 2 components) effects can be tested. The three-way
interaction (combined effect of three components) could also
be tested but would require collection of systematic repetitions
for every reaction.31 The maximal GAM model M0, which
assumes that all effects are significant, can be written as

= + + + + + +y a b s ab as bs( ) ( ) ( )ijk i j k ij ik jk (2)

where ai, bj, and sk are main effects of the alcohol i, base j, and
sulfonyl fluoride k, respectively; (ab)ij, (as)ik, and (bs)jk are
interaction effects between the respective reaction compo-
nents; ϵ is a constant accounting for white noise (Figure 4A).

We measured the magnitude of each effect with partial eta-
squared (η2),32 for which larger values correspond to greater
significance, and observed that all main and interaction effects
are significant, although the base−sulfonyl fluoride interaction
effect is close to the significance threshold (Figure 4B).

Overall, M0 sufficiently describes the data, with an adjusted
R2 of 0.97 and a residual standard error of 3.9%, consistent
with the experimental error of 4.8% observed in the original
study.14 Having determined that we cannot ignore any terms
from eq 1, we kept M0 as a reference for further modeling.

However, the features used in M0 are explicit molecule labels
(i.e., one-hot-encoded), such that it cannot be used for out-of-
sample predictions.

The second part of the modeling workflow is to build a
predictive model that can extrapolate along one or more
reaction components. To accomplish this, all terms that
involve these components must be replaced with functions of
their respective chemical features. In this study, we built a
model that extrapolates along only the alcohol component,
having 37 alcohols available for model building. We did not
attempt to build models that extrapolate into new bases or
sulfonyl fluorides, where only 4 and 5 molecules, respectively,
are available in the existing HTE dataset. However, we note
that the additive nature of GAM would allow for facile
incorporation of additional data, such as expansion of the base
or sulfonyl fluoride dimensions, without the loss of
interpretability. In M0, three terms use the alcohol labels
explicitly: the alcohol−base interaction term (ab)ij, the
alcohol−sulfonyl fluoride interaction term (as)ik, and the
alcohol main effect term ai. Because all three terms correspond
to distinct, unrelated phenomena, we modeled them
independently with alcohol feature regressions (vide inf ra).
To facilitate modeling, we computed DFT features of the
alcohols at the M06-2X/def2-TZVP level of theory with
implicit THF solvation. Steric and electronic features that may
dictate the propensity of alcohols to undergo deoxyfluorination
were included, as these can serve to validate or even generate
mechanistic hypotheses (see the SI for a full list of features).
Interaction of Alcohol and Base. We used the

predictions of the M0 model to estimate the effect of the
base on the deoxyfluorination of each alcohol using the
method of estimated marginal means.33,34 The method is
analogous to a control vs treatment experiment, where we
select a control base (BTPP) and regard the other bases
(DBU, MTBD, and BTMG) as treatments that cause a certain
change in yield relative to the control; this change can vary for
each alcohol. We chose BTPP, the highest yielding base on
average, as a control base to identify regions of alcohol
chemical space for which other bases underperform. Though
the choice of control is arbitrary, we recommend choosing the
highest or lowest performing condition; this simplifies the
analysis when investigating the effect of each treatment on the
reaction. We then evaluated several atomic and molecular
DFT-derived features of the alcohols, generated via our group’s
AutoQChem workflow,35 to determine which ones correlate
with the presence vs absence of a yield differential relative to
the control.

This analysis led to the identification of the buried volume of
the α-carbon of the alcohol (Vbur), for which a threshold is
observed; alcohols with Vbur < 0.37 exhibit a large base
dependence, while alcohols with Vbur > 0.37 show little to no
dependence (Figure 5A). Examination of the chemical
structures of alcohols in the dataset below the threshold
reveals that DBU largely underperforms for primary,
unhindered alcohols. This effect is more pronounced for
benzylic alcohols within this regime, which suffer from lower
yields for both DBU and MTBD. For other more sterically
congested and unactivated alcohols, the effect of the base is not
significant.

Based on this observation, we hypothesized that the
alcohol−base interaction could arise from possible nucleophilic
substitution by smaller bases DBU and MTBD. For
unhindered primary and/or benzylic substrates, this side

Figure 4. (A) Predicted vs observed yield for the fixed effect model
M0. (B) Partial eta-squared for each term of the model with 95%
confidence intervals.
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reaction may be competitive with the desired fluorination. To
experimentally evaluate this hypothesis, we subjected un-
hindered, activated benzylic alcohol 1ao to the deoxyfluorina-
tion conditions with 4-NO2 and DBU. The amidinium salt 5
was observed in 55% yield, significantly outcompeting the
desired benzylic fluoride 2ao (21% yield) (Scheme 1). This
finding validates our mechanistic hypothesis that was based on
an alcohol−base interaction identified by the modeling
approach.

Thus, the alcohol−base interaction can be modeled with
base-dependent penalties for unhindered (Vbur < 0.37) and
benzylic alcohols. Replacing the alcohol−base interaction term,
(ab)ij, from M0 with functions of alcohol properties, we arrive
at the following model:

< + <b V b V( 0.37) ( 0.37&benzylic )j
i

j
i i1

bur
2

bur (3)

This case study demonstrates the utility of the modeling
approach to identify interactions that suggest underlying
chemical phenomena. These can inform experiments that
interrogate the mechanistic basis of the identified interactions,
ultimately yielding a more complete picture of the reaction of
interest.

Interaction of Alcohol and Sulfonyl Fluoride. Next, we
again used the M0 model predictions to compute the effect of
the sulfonyl fluoride for each alcohol with estimated marginal
means. We used PBSF, the highest yielding sulfonyl fluoride on
average, as the control and the others (4-CF3, 4-Cl, 4-NO2,
and PyFluor) as treatments. Through the same correlation
analysis, we identified the bond angle measured at the α-
carbon position of the alcohol (α) as a chemically meaningful
feature that correlates with the magnitude of sulfonyl fluoride
dependence. Other features, such as sterimol L, Vbur, or C−O
bond length, were not correlated to the observed effect (see
the SI for full analysis). Closer inspection of the chemical
structures revealed that cyclic substrates with significant bond
angle contraction (α < 101.8), and therefore significant ring
strain, are most influenced by the sulfonyl fluoride identity,
with PBSF enabling higher yields of the desired products. Less
strained five-membered rings (α > 101.8) also exhibit this
interaction effect, albeit of smaller magnitude than the more
strained rings (Figure 5B). Thus, we can model the alcohol−
sulfonyl fluoride interaction, (as)ik, using two sulfonyl fluoride-
dependent penalties: for cyclic alcohols with α < 101.8° and
for 5-membered rings. The resulting interaction term is

< + =s s( 101.8) (ring size 5)k k
i1 2 (4)

We sought to investigate the origins of the cyclic alcohol−
sulfonyl fluoride interaction, initially hypothesizing that the
superior leaving group ability of the perfluorobutanesulfonate
anion could facilitate an SN1 mechanism for this more
challenging substrate class and explain the greater reactivity
observed with PBSF. To evaluate this hypothesis, we first
pursued a stereochemical study. We had previously observed
that deoxyfluorination of fused bicyclic alcohol 1m with PBSF

Figure 5. (A) Effect of the base identity on yield as a function of the buried volume of the α-carbon, Vbur. Activated alcohols are highlighted with
additional markers (diamonds for benzylic, circles for allylic). The plot reveals that activated alcohols with Vbur < 0.37 (shaded gray box) exhibit a
significant interaction effect. (B) Effect of the sulfonyl fluoride identity on yield for cyclic alcohols as a function of the ring angle measured at the α-
carbon, Cα. The plot reveals that strained cyclic alcohols with Cα < 101.8 (shaded gray box) exhibit a significant interaction effect.

Scheme 1. Reaction of 1ao with 4-NO2 and DBU
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resulted in complete inversion. However, since this stereo-
chemical outcome could be due to either sterically restricted
SN1 substitution or an SN2 mechanism, the same experiment
was conducted with diastereomer 1an. Inversion was again
observed, in direct contradiction to our initial hypothesis and
consistent with an SN2 mechanism (Figure 6A).

To evaluate the interaction effect further, we also pursued a
kinetic study. However, the deoxyfluorination mechanism
presents two challenges toward kinetic analysis. First, the
sulfonylation and fluorination steps cannot be decoupled;
therefore, the identification of a system where sulfonylation is
sufficiently rapid to allow for observation of only the rate of
fluorination is imperative. Fortunately, 1H NMR studies with
alcohol 1an revealed nearly instantaneous conversion to
sulfonate ester 6, with slower fluorination to deliver the
desired product 2an, such that the observed reaction rate is
equal to the rate of fluorination.36 The second limitation arises
from the concomitant generation of the electrophile (sulfonate
ester) and nucleophile (amidine/guanidine hydrogen fluo-
ride); the stoichiometry of these species is therefore set as 1:1
and cannot be manipulated in isolation. To overcome this
challenge, we generated the base•HF species independent of
the reaction of interest. We identified 4-methoxyphenol as an
appropriate sacrificial alcohol which, in the presence of PBSF
and BTMG, readily undergoes sulfonylation but not
fluorination, thereby generating but not consuming the active
fluoride nucleophile (Figure 6B).36 To probe the dependence
of the reaction on the concentration of fluoride, we conducted
studies on the reaction of 1an with 0.8, 0.4, or 0 added
equivalents of BTMG•HF (Figure 6C). A positive order
dependence on the nucleophile was observed, consistent with
the stereochemical data and an SN2 mechanism. Put together,
these experiments suggest that the observed interaction effect
for PBSF is due not to the generation of a better leaving group
for SN1 substitution but rather to the generation of a more
potent electrophile for bimolecular substitution.

In these studies, we noticed that ∼10% of starting material
remains unreacted despite nearly instantaneous sulfonate ester
formation under standard conditions (1.1 equiv of PBSF, 1.5
equiv of BTMG, and THF (0.4 M)). Further experimentation
revealed that BTMG can competitively react with PBSF (see
the SI for details), though identification of the adduct has
proven elusive. Nevertheless, employing trityl cation as a
fluoride scavenger,37 we observed 21% yield of trityl fluoride 7
in the presence of PBSF and BTMG, providing preliminary
evidence that this adduct could also serve as a fluoride source
(Figure 6D). This observation could also account for the
alcohol−sulfonyl fluoride interaction by enabling access to a
more nucleophilic fluoride source for the challenging
substitution reaction.

With a clearer mechanistic picture of the observed
interaction effect, we sought to enhance the reaction yields
for more challenging cyclic substrates. We hypothesized that a
larger excess of PBSF and BTMG would enable full
sulfonylation of the alcohol while also increasing the
concentration of competent fluoride present. Ultimately, we
employed 2 equiv of PBSF and 3 equiv of BTMG, leading to a
1.5-fold increase in yield for alcohol 1q compared to standard
conditions (Figure 6E). Overall, this study highlights the role
that statistical modeling can play in inspiring new mechanistic
questions that facilitate deeper analyses of chemical reactivity
and how we can leverage our improved understanding to
enable more powerful synthetic transformations.

Alcohol Main Effect. To study the effect of the alcohol
structure on reactivity, we could not use M0 marginal means
due to the presence of significant interactions with both base
and sulfonyl fluoride, which would affect the averages and
therefore be uninterpretable according to the principle of
marginality.38 Therefore, we examined the effect of the alcohol

Figure 6. Standard conditions: alcohol (0.1 mmol), PBSF (1.1 equiv),
BTMG (1.5 equiv), and THF (0.4 M). (A) Reactions of
diastereomers 1m and 1an both result in inversion. (B) Full
consumption of 4-methoxyphenol was observed. (C) The reaction
was monitored at varied [BTMG•HF] and found to exhibit a
positive-order dependence (left, PBSF (2 equiv), BTMG (3 equiv),
and THF-d8 (0.2 M)). Representative reaction profile with
BTMG•HF (0.4 equiv) (right). (D) The trapping of trityl cation
proceeded in 21% in the presence of PBSF and BTMG. (E) Use of
PBSF (2 equiv) and BTMG (3 equiv) enabled a 26% increase in yield
of product 2q.
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itself using the control levels for base (BTPP) and sulfonyl
fluoride (PBSF). For primary alcohols, a strong dependence of
the yield on Vbur was observed in all cases except for allylic
alcohol 1w (Figure 7A). When we modeled all terms

determined to be important thus far, namely, Vbur dependence
for primary alcohols and alcohol interactions with base and
sulfonyl fluoride (eqs 2 and 3), as a linear function, the
resulting model had an R2 = 0.5. Thus, plenty of variance
remained unexplained. Re-evaluating the dataset, we noticed
that allylic alcohols 1x, 1y, and 1z and homoallylic alcohol 1ab
all exhibited slightly lower yields than their less activated
counterparts. Including additional penalty terms for allylic and
homoallylic alcohols improved the fit of the model to R2 =
0.65.

Seeking further improvement, we built an interim model that
added a new term for each alcohol, thereby measuring the
remaining residual effect per alcohol on yield (Figure 7B). By
plotting the resulting residuals against various alcohol features,
we found that a correlation is only observed with electro-
negativity (EN) of the alcohol, defined as the negative average
of HOMO and LUMO energies. Notably, we were unable to
identify any other features that substantially improved the fit,
prompting us to add an electronegativity term as a spline
function to the alcohol main effect model.

We replaced the main effect of the alcohol, ai, in M0 with the
appropriate functional form:

+ + +V fallylic homoallylic ( & primary ) (EN)i i i i
bur

2

(5)

The final model, M1, with all alcohol-dependent terms
replaced with functions of alcohol features using eqs 3−5 had
R2 = 0.83 with a standard error of 11%.
Leave-One-Alcohol-Out Validation. We evaluated the

robustness and performance of the M1 model with leave-one-
alcohol-out (LOAO) validation, using the RF model built
using all available features as a comparison baseline. The
training and LOAO validation errors for both models are
shown in Figure 8.

First, we found that the mean absolute validation error
(MAE) and root-mean-squared error (RMSE) are both largely
reduced for M1 (15% MAE, 17% RMSE) compared to the RF
model (20% MAE, 22% RMSE). Second, the validation errors
for M1 are much closer to the training errors (difference of
5%), implying much less overfitting than the RF model, which
has a much larger discrepancy between its training and
validation errors (difference of 14%). Similar comparisons
were made with LASSO and stepwise regression, which both
underperformed compared to M1. Furthermore, neither RF,
LASSO, nor stepwise regression was able to learn the observed
interaction effect (see the SI for details).

This represents a marked improvement over the original RF
model: overfitting, which occurs when too much is inferred
from the training data, is a known cause of poor generalization
of ML models. The challenge of overfitting has been
highlighted previously in the context of HTE modeling.22

Although M1 performed much better in cross validation, we
note that it falls short for tertiary alcohols (1f and 1y) and
allylic/homoallylic alcohols (1x, 1y, 1w, and 1ab). More data
are required to stabilize the model in this region of chemical
space. However, the generally poor reactivity of these substrate
classes presents a significant obstacle toward collecting a well-
rounded dataset.
Model Generalization. Although the M1 model ad-

equately fits the data from the HTE, we sought to test its
generalization with a new set of alcohols (Figure 9A). We first
examined the overall yield prediction accuracy. Furthermore,
since the M1 model comprises three separate models (two
interaction models for alcohol−base and alcohol−sulfonyl
fluoride interactions and one model for the main effect of the
alcohol), we also studied whether the observed interactions

Figure 7. (A) Yield as a function of Vbur (linear fit) for primary
alcohols with PBSF and BTPP. (B) Residual variance of the interim
model as a function of alcohol electronegativity (spline fit). The point
labels omit the prefixes: 1 for alcohol (x-axis) or 2 for the fluorinated
product (y-axis).

Figure 8. Comparison of leave-one-alcohol-out validation errors and
training errors for the M1 and random forest models. Circled
substrates represent low yielding alcohol classes that are fitted poorly
by the model (tertiary, allylic, and homoallylic alcohols).
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with base and sulfonyl fluoride persist for additional alcohols in
the respective regions of chemical space.
Yield Prediction Accuracy. For the new validation set of

alcohols, yield predictions of the M1 model are much improved
(MAE = 13%, RMSE = 17%) compared to the RF model built
with all available features (MAE = 18%, RMSE = 21%). The
predictions of the M1 model (Figure 10A) are better correlated
with the experimental yields, while the RF predictions (Figure
10B) center around average yield values. Nevertheless, the M1
model still leaves room for improvement in prediction
accuracy: the performance of 1al and 1am is underestimated,
which is likely due to an unmodeled interaction between
hindered primary benzylic alcohols and base (vide inf ra).

On the other hand, the performance of 1ap and 1aq is
overestimated, especially with PBSF. Analyzing reactions of
these alcohols with PBSF revealed the formation of undesired
fluorinated products arising from competitive THF substitu-
tion followed by fluoride attack (Figure 9B). Interestingly,
across the entire validation dataset, THF incorporation is only
observed for 1ap (10−35%) and 1aq (5−16%), likely due to
the unhindered and electronically activated nature of these
alcohols.39

Knowledge of this side reaction was used to further improve
model performance by replacing the yield of benzylic fluoride
with the combined yields of benzylic (desired) and aliphatic
(undesired) fluoride products. This resulted in enhanced
model performance that amounted to a ∼2% decrease in MAE
and a ∼3% decrease in RMSE for both the M1 (Figure 10C)
and RF (Figure 10D) models. This analysis highlights the
challenge of using yield as the only input for an ML model: the
rate and selectivity of the reaction, which are essential
reactivity considerations, inevitably remain unaccounted for.
Validation of Alcohol−Base and Alcohol−Sulfonyl

Fluoride Interaction Effects. For primary and benzylic
alcohols (1al, 1am, 1ao, 1ap, and 1aq, Vbur < 0.37), we
observed a base dependence analogous to that observed in the
training data. The validation data for bicyclic alcohol 1an are

also in agreement with the original data, exhibiting a strong
sulfonyl fluoride dependence. For the three ortho-substituted
benzylic alcohols (1al, 1am, and 1aq), however, substantial
base dependence is observed despite their high Vbur values
(>0.37). Upon further analysis, we found that more electro-
negative benzylic alcohols (1ao, 1al, and 1am) are more
sensitive to the base identity than their less electronegative
counterparts (1ap and 1aq) in our validation set (Figure 10E).
In the original HTE dataset, two primary benzylic alcohols
have Vbur above the hypothetical Vbur threshold (1s and 1t),
and neither of them showed base dependence. The alcohol 1t
has very low electronegativity, suggesting that electronegativity
is needed for the observation of the interaction. The alcohol 1s
has high electronegativity (Figure 10F), though the lack of
interaction (vide supra, Figure 7) could be attributed to very
high Vbur. However, additional data are required to further
elucidate the interplay between alcohol electronegativity and
its Vbur for primary benzylic alcohols. Nevertheless, while
constructing the model, we successfully identified a class of
alcohols with significant interactions, as well as key features
that allowed for further exploration.

■ CONCLUSIONS
Herein, we presented a statistical modeling approach for
determining interactions within an HTE reaction dataset. First,
the reaction yield was decomposed into main and interaction
effects using ANOVA, and second, the individual effects were
modeled with feature-based regressions. In this approach, we
respect the structure of HTE datasets and aim to combine
advanced modeling with chemical expertise. The first ANOVA
step is trivial and can immediately be performed on any HTE
dataset. However, the process of identifying key features that
correlate with interaction patterns cannot be fully automated,
and a level of chemical expertise is still required to build a
model that is plausible from a chemical standpoint. A direct
benefit of a chemist-in-the-loop approach such as ours is the
ability to form mechanistic hypotheses that could explain the

Figure 9. (A) The validation dataset includes 6 alcohols (5 benzylic and 1 cyclic), 4 bases, and 2 sulfonyl fluorides. (B) Formation of the THF-
functionalized byproduct 3ap likely results from competitive nucleophilic attack by THF. (C) Predicted and observed yield for M1 and random
forest models for the set of 7 validation alcohols. In the lower two panels, the data points for alcohols 1ap and 1aq correspond to the sum of desired
benzylic and undesired solvent-incorporated products; the dashed line and desaturated points indicate the yield of the desired benzylic fluoride
alone.
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observed effects, thereby streamlining the process of model
validation (i.e., confirming or disproving the existence of
specific effects with new substrates). An indirect benefit is a
more interpretable model with better generalizability to out-of-
sample substrates, which we demonstrated on our previously
published deoxyfluorination dataset, largely improving the
MAE and RMSE compared to the original random forest
algorithm (by ∼25%).

We find statistical modeling to be an essential tool for
studying this deoxyfluorination dataset, allowing for inspection
and modeling of the two-way interactions. However, complex

multiway interactions (three-way or four-way), which may be
observed in larger HTE datasets, may be difficult to capture in
a functional form beyond specifying that an interaction is
present and significant. Nevertheless, with this initial example,
we have demonstrated that decomposition of the signal into
main and interaction effects could serve as a useful tool for
identifying areas of chemical space where a reaction is
particularly sensitive to the identity of reaction components.
The identification of these sensitivities could inspire new
mechanistic hypotheses, which can be tested experimentally to

Figure 10. Predicted and observed yield is shown for the set of 7 validation alcohols for (A) M1 and (B) random forest models. Predicted and
observed yield, split by alcohol, is shown for (C) M1 and (D) random forest models. In panels A and B, the data points for alcohols 1ap and 1aq
correspond to the yield of the benzylic fluoride alone. In panels C and D, the data points for alcohols 1ap and 1aq correspond to the sum of the
desired benzylic fluoride and the undesired aliphatic fluoride byproduct. (E) Effect of the base identity on yield as a function of the buried volume
of the α-carbon, Vbur, for primary and benzylic validation alcohols. (F) Electronegativity of primary and benzylic alcohols from the HTE and
validation datasets.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c13093
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

J

https://pubs.acs.org/doi/10.1021/jacs.2c13093?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c13093?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c13093?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c13093?fig=fig10&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c13093?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


afford an improved understanding of the reaction of interest
and chemical reactivity more broadly.
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