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ABSTRACT: A broad survey of heterogeneous hydrogenation catalysts has been conducted for the reduction of heterocycles
commonly found in pharmaceuticals. The comparative reactivity of these substrates is reported as a function of catalyst, temperature,
and hydrogen pressure. This analysis provided several catalysts with complementary reactivity between substrates. We then explored
a series of bisheterocyclic substrates that provided an intramolecular competition of heterocycle hydrogenation reactivity. In several
cases, complete selectivity could be achieved for reduction of one heterocycle and isolated yields are reported. A general trend in
reactivity is inferred in which quinoline is the most reactive, followed by pyrazine, then pyrrole and with pyridine being the least

reactive.

Bl INTRODUCTION

Among bioactive cyclic structures, N-heterocycles represent one
of the most important motifs in drug design, with at least one
ring present in most FDA-approved drugs." The addition of
saturated cores to drug molecules has several demonstrated
advantages. Chief among them is that increased three-
dimensionality of a dru§ candidate has been correlated with
greater clinical success.” An increase in the fraction of sp’
carbons (F;") has been shown to improve physical properties
such as solubility’™> as well as reduce promiscuity toward off
target interactions, which can lead to toxicity and clinical
candidate failure.’ Additionally, increased F,» provides greater
complexity (often via stereocenters) enabling access to diverse
chemical space. Despite recent developments in sp’—sp’
coupling methods,” "> there are limited general strategies for
incorporating saturated heterocycles into drug molecules. By
contrast, there are many robust strate§ies for the construction of
sp’—sp® carbon—carbon bonds.'°™"® Given this, a desirable
approach to constructing high F,; target molecules for drug
discovery would involve constructing biheteroaryl cores via
known cross-coupling methods, then selectively reducing the
desired heterocycle (Scheme 1).

The hydrogenation of simple N-heteroarenes can be achieved
throu%h a variety of homogeneous or heterogeneous cata-
lysts."”~>' However, in more complex drug-like molecules with
multiple aromatic moieties, chemoselectivity can be elusive and
difficult to predict, often requiring extensive screening of
catalysts and conditions. To date, little has been reported
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about chemoselectivity in multiaromatic substrates despite the
synthetic potential of such a strategy and the availability of
hundreds of hydrogenation catalysts.”” >* A better under-
standing of hydrogenation selectivity in substrates with multiple
heteroarenes would provide a guide allowing for rapid access to
saturated heterocycles with greater complexity. For example, the
synthesis of triaryl intermediate I (accessed via standard sp*—sp”
coupling) would allow access to multiple reduced analogues via
a hydrogenative diversification approach (Scheme 1), furnishing
multiple compounds from a common core. Such a strategy could
be a highly advantageous approach to rapidly synthesize
saturated drug motifs.

Research in chemoselective hydrogenation has largely focused
on the reduction of fused bicyclic heterocycles using
homogeneous transition metal complexes. Substrates such as
quinolines, isoquinolines, and acridines possess a smaller
energetic penalty for dearomatization by comparison to their
monocyclic counterparts, resulting in milder reduction con-
ditions. Remarkable selectivity can be achieved in these systems
with the use of homogeneous catalysts, and recent developments
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Scheme 1. Chemoselective Reduction for Complex
Molecules
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in asymmetric hydrogenation”"*> and catalyst controlled

regioselectivity’® ' are noteworthy. However, these ap-
proaches are limited to substrates for which reduction is more
facile. Homogeneous catalysts are largely unsuitable for the
hydrogenation of more challenging classes of arenes such as

31,32 .. 33,34 e 31,3539
pyrroles, pyridines, and benzene derivatives,
which have higher aromatic stability.""~* To ensure these
important motifs could be included in our efforts, we chose to

focus our work on heterogeneous hydrogenation catalysts.

B RESULTS AND DISCUSSION

To explore whether selectivity was possible in heterocyclic
systems and establish any empirical trends, we undertook a
systematic survey of the heterogeneous hydrogenation catalysts
employing high-throughput experimentation techniques. Here-
in, we describe our initial broad catalyst screening approach with
a series of simple substrates and subsequent efforts to reduce our
initial catalyst list. The resulting set of catalysts was then applied
to more elaborate biaryl compounds for a series of intra-
molecular competition experiments. The resulting data reveals
important hydrogenation reactivity trends among the most
common pharmacophores. At the outset, we hypothesized that a
screening effort of heterogeneous catalysts might uncover
complementary selectivity. We began our efforts by focusing
on the most prevalent heterocycles in pharmaceuticals; pyridine
(1), pyrazine (2), pyrrole (3), and quinoline (4) (Figure 1)." To
enable analytical detection we chose substrates with a phenyl
ring appended, ensuring a UV chromophore for LCMS
measurement.

We conducted an initial screening campaign using 96 well
plates in high-throughput format. The screen was composed of
93 different catalysts including Pd, Pt, Rh, Ru, Ir, and Ni
compounds compiled from commercial sources. Within this
catalyst library was a large selection of Pd/C catalysts from

Z§\ /;
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1

o o

Figure 1. Model substrates and expected products.
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different manufacturers, representing the diversity of carbon
sources and microstructures.*’ Additionally, we explored
temperature (30 or 60 °C), pressure (200 or 500 psi), and the
effect of acetic acid as an additive (Scheme 2).

Scheme 2. Survey of Hydrogenation Conditions
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Each reaction was evaluated using calibrated yields against an
internal standard with authentic products. Washing the catalyst
with excess acetonitrile ensured little product was bound to the
leftover catalyst.** The data from our initial screen at 200 psi and
30 °C can be seen in Figure 2. Satisfyingly, numerous catalysts
demonstrate complementary reactivity as a function of the
heterocycle. For example, quinoline (4) is reduced by almost all
the catalysts in the screen. In contrast, only a small number of
catalysts can reduce pyridine (1) under these conditions. The
data from all screens can be found compiled in the Supporting
Information.

In Figure 3, the data are color coded according to the type of
metal used. Pd and Pt are the most active in the screen, as
reflected by the large number of red and purple data points. The
mixed catalysts (orange) represent mixed metal hydrogenation
catalysts (see SI for more info). In this subset, the Pd doped
species led to higher conversion across the substrates screened.

To boost the conversion of phenylpyridine, the poorest
performing substrate above, we evaluated several common
variables across this catalyst set: pressure, temperature, and
acetic acid. Acidic solvents—and acetic acid in particular—are
common promotors for arene hydrogenation.**™**

Screening conditions with higher pressure (500 psi) and
temperature (60 °C) had minimal effect on the yield of
phenylpyridine hydrogenation. Acetic acid was the most
effective, providing a dramatic boost at 200 psi (Figure 3).
Using acetic acid as a solvent in this screen was also effective but
provided little advantage over 10 equiv of acetic acid in methanol
(see SI for more information).

With an initial survey of our model substrates and catalyst
collection complete, we sought to simplify the screening
procedure for future studies by reducing the number of catalysts.
Our initial list was composed of 93 different catalysts. Achieving
a similar diversity of reactivity with fewer catalysts would
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Figure 3. Hydrogenation of phenylpyridine 1 with and without AcOH at 200 psi, 30 °C.

dramatically increase the screening efficiency and reduce future
substrate demands.

To begin this process of catalyst prioritization, we eliminated
catalysts that were inactive across our substrates. Approximately
50% of ~1200 initial reactions screened represent failed
reactions (0—10% yield). We then prioritized catalysts that
showed a range of reactivity across our substrates and gave a
broad distribution of yields. Ultimately, we chose 23 catalysts to
represent the diversity of reactivity observed in our initial
screening experiments. Logistically, a 23 catalyst set enabled us
to perform four screens in one 96 well plate (23 catalysts +
control) and reduced the material burden as other variables were
explored.

Intramolecular Competitions. With a smaller catalyst set
in hand, we sought to apply these findings to more complicated

substrates. To enable these efforts, we synthesized the
bisheterocyclic substrates (5—10) shown in Figure 4. These
substrates utilize the common heterocycles chosen above
(Figure 1) tethered together with a benzene ring and provide
a unique opportunity to probe intramolecular chemoselectivity.
The benzene linker was chosen for its ease of synthesis and
resistance to hydrogenation under these conditions, allowing a
chromophore to be retained after the reaction.

Substrates (5—10) were screened using analogous conditions
to those used above (Figure 1), however reduced solubility in
methanol led us to use different solvents. Thus, we conducted
hydrogenation screens in dioxane, trifluoroethanol, and
dimethoxyethane at either 200 or 500 psi H,, and either 30 or
60 °C over 18 h.
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Figure 4. Bisheterocycles for hydrogenation screen.

A detailed example of one screen with 7 can be seen in Figure
S. Here, the ratio of pyrazine to pyrrole reduction (7a/7b) is
plotted as a function of catalyst and conversion. The plot is
shaped according to solvent; dioxane (cross), trifluoroethanol
(circle), and dimethoxyethane (square) and each point
represents a unique catalyst/solvent combination. Upon
analysis, it was observed that selectivity was strongly influenced
by both catalyst and solvent. Most catalysts showed a strong
preference (>100:1) for pyrazine reduction in dioxane and
dimethoxyethane. Interestingly, the selectivity appears to erode
in trifluoroethanol, with a mixture of 7a, 7b, and 7c observed.
For example, one of the Pd(OH),/C catalysts provides 78%
conversion with a >100:1 selectivity of pyrazine reduction in

dimethoxyethane, but a mixture of all three products is formed in
trifluoroethanol, albeit with 100% conversion.

A second example is shown in Figure 6, using substrate 9,
which subjects pyrazine and quinoline to an intramolecular
hydrogenation competition. Again, plotting data from all three
solvents together illustrates the stark variation in reactivity. Both
dioxane and dimethoxyethane promoted high levels of
selectivity for quinoline reduction (9b). Dimethoxyethane in
particular showed high levels of selectivity and conversion.
Trifluoroethanol provided high levels of conversion across
several catalysts screened. However, in trifluoroethanol, nearly
all the catalysts led to reduced selectivity for quinoline reduction.
In dimethoxyethane, a Pd(OH),/C catalyst led to 100%
conversion with ~100:1 selectivity for quinoline reduction. In
contrast, changing solvents to TFE with the same catalyst led to
an erosion of selectivity and a greater amount of bisreduction,
9c.

A summary of these screens is shown in eqs 1—6 with the
optimal catalyst and conditions listed for each substrate. While
complete selectivity could not be achieved for all substrates,
synthetically useful selectivity was observed for many. Quinoline
could be selectively reduced in the presence of pyrrole (eq 1),
pyridine (eq 2), and pyrazine (eq 3) with high chemoselectivity.
A mixture of tetrahydroquinoline and decahydroquinoline was
observed in most reactions. Complete reduction to the
decahydroquinoline product could be achieved with longer
reaction times. PtO, provided the best conversion and selectivity
for each of these reactions, but several other catalysts performed

o o
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Figure S. Hydrogenation screen of 7.
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Multiple catalysts were sufficient to reduce pyrazine in the
presence of pyridine (eq 4), but we highlight optimal conditions
i /N] in dioxane. The selective reduction of pyridine in the presence of
j PO PO SN pyrazine was not observed. Pd(OH),/C was also optimal for the
O N - 9 — O reduction of pyrazine in the presence of pyrrole, however only
7 GBF°EC 6DOWCE: O €) small amounts of the desired pyrrole reduction could be
SN O 200 psi 200psi N observed using Pt/Al,O; in TFE (eq 5). Achieving selectivity in
9% 9% the pyridine/pyrrole system was more challenging. Only slightly

4:1 9a/9c (bis reduction)

14:1 9b/9a

biased product ratios could be obtained as a result of catalyst and
solvent choice (eq 6). Despite the lack of selectivity, such
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mixtures may be quite useful in a medicinal chemistry context,

where both 6a and 6b can be isolated from one reaction.
Scale-up reaction yields based on the optimized conditions of

eqs 1—6 can be found in Table 1. The Trifluoroacetic acid or

Table 1. Isolated Yields of Hydrogenation Reactions

91% yield 53% yield 46% yield
», @i
N/ ~ |
H
[N
N N ‘
H 7a H 8b
71% yield 75% yield
H
N H
-z ] N N
¥ ]
N
N
® (o y
® ®
N N N~
9b H 9 10a
68% yield 73% yield 90% yield

hydrochloric acid salts of these compounds were isolated in
good yields. In all substrates, quinoline reduction was observed
in preference to pyrazine, pyrrole, or pyridine (Table 1, 9b, 6b,
8b). A small amount of the tetrahydroquinoline (THQ) product
was observed in each case but could easily be separated by
chromatography. Consistent with the screens above, we
observed good yields of pyrazine reduction in the presence of
pyrrole (7a) as well as in the presence of pyridine (10a). Finally,
despite initial screens suggesting pyrrole to be more reactive
than pyridine (Figures 2 above), we obtained mixtures of these
reduction products 6a/6b using substrate 6.

These results suggest a general trend for the hydrogenation of
nitrogen heterocycles is as follows: quinoline, pyrazine, pyrrole,
then pyridine as the least reactive (Figure 7). Our initial

General Hydrogenation Reactivity Trend

A N\ n N\
) S S R C
N N / Z
least reactive

most reactive

Figure 7. Observed hydrogenation reactivity.

experiments show that acetic acid is an effective promoter of
substrates that are sluggish toward reduction. We note that
pyridine and pyrrole appear to have similar reactivity in the
intramolecular competition experiment. Surprisingly, both
catalyst and solvent have a dramatic impact on chemoselectivity
in the substrates screened. Density functional theory calcu-
lations were employed to determine if thermodynamics were
responsible for the selectivity observed. However, after
calculating and comparing the energies of the respective starting
materials and products in eqs 1—6, no correlation with
thermodynamic preference was found. The source of selectivity

is most likely governed by the kinetics of each reaction as well as
the specific binding interactions with the surface bound metal,
which is beyond the scope of this work. Mechanistic
investigations of these and related hydrogenations remains an
important area of study, with future implications for selectivity.
In summary, we compiled and surveyed a large collection of
heterogeneous catalysts in order to uncover general trends in
reactivity among the most common heterocycles in pharma-
ceuticals. To our satisfaction, we observed several catalysts and
conditions that could provide complementary reactivity
between the simple heterocycles employed (Figures 1 and 2).
Within this broad collection of catalysts, we explored the effect
of temperature, pressure, and acetic acid as variables to increase
the reactivity of a substrate. Additionally, we screened a series of
bisheterocyclic substrates and provided a systematic competi-
tion for heterocycle reactivity toward hydrogenation. In several
cases, complete selectivity could be achieved and the isolated
yields of these reactions are summarized in Table 1. While the
nature of this chemoselectivity is not fully understood, these
results can serve as a guide for chemists looking to achieve
chemoselectivity in related and more complex systems. Future
work involves expanding these intramolecular experiments to
other classes of heterocycles as well as exploring predictive
modeling techniques to help assess chemoselectivity a priori.
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