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Identifying general reaction conditions by 
bandit optimization

Jason Y. Wang (王亿珩)1,2, Jason M. Stevens3, Stavros K. Kariofillis1,2,8,12, Mai-Jan Tom2,12, 
Dung L. Golden3,12, Jun Li4, Jose E. Tabora4, Marvin Parasram1,9, Benjamin J. Shields1,10, 
David N. Primer3,11, Bo Hao5, David Del Valle4, Stacey DiSomma4, Ariel Furman4, G. Greg Zipp6, 
Sergey Melnikov7, James Paulson4 & Abigail G. Doyle1,2 ✉

Reaction conditions that are generally applicable to a wide variety of substrates are 
highly desired, especially in the pharmaceutical and chemical industries1–6. Although 
many approaches are available to evaluate the general applicability of developed 
conditions, a universal approach to efficiently discover these conditions during 
optimizations is rare. Here we report the design, implementation and application  
of reinforcement learning bandit optimization models7–10 to identify generally 
applicable conditions by efficient condition sampling and evaluation of experimental 
feedback. Performance benchmarking on existing datasets statistically showed high 
accuracies for identifying general conditions, with up to 31% improvement over 
baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed 
imidazole C–H arylation reaction, an aniline amide coupling reaction and a phenol 
alkylation reaction were investigated experimentally to evaluate use cases and 
functionalities of the bandit optimization model in practice. In all three cases, the 
reaction conditions that were most generally applicable yet not well studied for the 
respective reaction were identified after surveying less than 15% of the expert-designed 
reaction space.

Chemists have long sought robust synthetic methods that can be 
applied to a wide variety of substrates11–13. However, these methods 
are generally developed and optimized with only one or a few model 
substrates. These ‘optimized’ conditions are subsequently applied to a 
substrate scope, usually with higher yielding substrates preferentially 
reported. However, optimal reaction conditions for one substrate 
are not guaranteed to be applicable to other molecules. Despite the 
increased efficiency of reaction optimization enabled by automated 
reaction systems14–20 and optimization algorithms21–30, this phenom-
enon still substantially hampers the adoption of newly developed meth-
odologies in synthetic chemistry31,32. Further optimization for different 
target substrates is typically required, and pharmaceutically relevant 
molecules with high structural complexity might not be compatible 
with the existing conditions at all33. Most work so far has focused on 
retroactively evaluating the general applicability of developed meth-
odologies using substrate scope design or additive screening34–37.

Nevertheless, post hoc analyses of applicability do not change the 
reaction conditions derived from antecedent optimization. De novo 
optimization processes that can directly yield generally applicable 
conditions are highly sought. Recent advances in asymmetric catalysis 
have started to address this problem, in which chiral catalysts that 
enable highly stereoselective transformations for a broad range of sub-
strates were identified through multi-substrate screening1–4. However, 

despite advances in high-throughput experimentation (HTE), exhaus-
tive examination of high-dimensional reaction conditions for a sizable 
scope of diverse substrates remains analytically difficult and experi-
mentally expensive to carry out. Judicious selection of experiments 
is, therefore, imperative to efficiently explore a reaction space during 
optimization38. A notable recent example from Burke, Aspuru-Guzik 
and Grzybowski aimed to find more general sets of conditions for a 
Suzuki–Miyaura cross-coupling reaction with aryl halides and aryl 
N-methyliminodiacetic acid (MIDA) boronates5 using Bayesian optimi-
zation. After the initial benchmarking and downselection of reaction 
conditions before optimization, exploration of more than 50% of the 
reaction space identified conditions more general than a previously 
published standard condition. This important advance notwithstand-
ing, a universal reaction optimization model targeting general applica-
bility, especially one with an efficient experiment selection strategy that 
can also be easily incorporated into the workflow of bench chemists, 
has not yet been realized.

In this study, we show that reinforcement learning models can effec-
tively guide chemists to the most generally applicable conditions for 
a given substrate scope without previous experimental data on the 
reaction system. We designed a discrete optimization framework with 
experiment selection strategies that target condition generality, as 
quantified by average reactivity (albeit other distribution metrics can 
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be used). Through performance benchmarking on four existing reac-
tion datasets, we demonstrate that the implemented reinforcement 
learning model and its underlying algorithms reach high accuracies 
for identifying optimal general conditions in all cases, while being 
adaptable, scalable and data efficient. To further substantiate the opti-
mization framework, we validated the learning model on three unseen 
chemical transformations.

Model design and development
The multi-armed bandit problem7–10 is a reinforcement learning prob-
lem that resembles many characteristics of the generality optimization 
problem in chemistry. In the classic stochastic formulation, a casino 
player is presented with a series of slot machines, each with a fixed but 
different reward distribution that is initially unknown. With a limited 
budget, the objective of the player is to maximize overall winnings by 
recognizing and playing the slot machine with better payouts. To do 
so, the player efficiently allocates the limited resources to balance the 
exploration of rarely played machines and the exploitation of current 
best options. In a reaction optimization campaign, chemists need to 
choose from many options for reaction conditions to maximize certain 
objectives with limited initial knowledge of how they will perform on a 
wide range of substrates (Fig. 1a). Finite experimental resources must 
be efficiently allocated to each reaction condition in consideration of 
a similar exploration–exploitation tradeoff: current best conditions 
derived from empirical knowledge are usually exploited, whereas new 
conditions are explored in hopes of discovering previously unknown 
and more effective methods. The similar characteristics of both 
problems prompted us to adapt solutions to the multi-armed bandit 
problem (often called bandit optimization algorithms) for generality 
optimization in chemistry.

The multi-armed bandit problem has been previously studied in 
chemistry contexts for autonomous drug design and reaction condi-
tion discovery39,40. In the latter case, an information-directed adaptive 
sampling algorithm was designed to sample conditions for a single 
reaction to maximize information gains and reaction yields41. Whereas 
condition arms are dropped in this example after they are sampled once 
for each reaction, we hypothesized that repeated sampling of distri-
bution of each condition arm over a substrate scope (the underlying 
population for each arm) guided by bandit algorithms would enable the 
prediction of condition generality across substrates, a main contrast 
with the previous work (Fig. 1c). Using reaction yield as an example of 
an optimization objective, the same substrate scope is expected to 
exhibit different reactivities under different conditions, resulting in 
unique reward distributions for each arm (Fig. 1b). The treatment of 
condition variables as discrete arms enable flexible interpretation of 
conditions. For example, arms can cover one condition dimension (for 
example, solvent) or many dimensions (for example, combinations 
of catalyst, ligand, base and solvent). Incorporating substrates into a 
distribution also means no explicit search space needs to be defined, 
and the algorithm can adjust its estimation of the distribution of each 
condition by continuing to sample that condition. This feature enables 
both the elimination of ineffective arms and the expansion of substrate 
scope on the fly during optimization. The latter is especially important 
in application, as the generality of a reaction condition is highly depend-
ent on the scope it is applied to.

We implemented the optimization framework in Python centred 
around a reaction scope object that can create substrate scopes with 
possible conditions, interface with bandit algorithms, propose and 
record experimental results, predict yields for unrun reactions and 
recom mend general conditions (Extended Data Fig. 2). We imple-
mented numerous stochastic bandit algorithms for both binary 
rewards (for example, reactivity thresholds) and continuous rewards 
(for example, numeric reaction yields). Effective algorithm classes 
were identified through extensive benchmarking with synthetic data 

as well as empirical modifications and hyperparameter selections that 
are beneficial to algorithm performance. The Bayes UCB (Upper Con-
fidence Bound) algorithm42 with tuned parameters mostly offered the 
best performance, whereas the UCB1-Tuned algorithm43 is preferred 
in practice because of the absence of tunable parameters and gener-
ally satisfactory performance. Multiple approaches to support batch 
proposing and updating were also implemented to allow parallel experi-
mentation in practice (see Supplementary Information for details 
on algorithm benchmarking and development). Unlike optimization 
frameworks that involve costly fitting of Gaussian processes and neural 
networks as surrogate models44, our framework is also lightweight and 
computationally efficient with minimal software dependencies. This 
advantage not only enhances software performance in a production 
environment but also enables us to extensively simulate the learning 
model with existing datasets to statistically evaluate its effectiveness.

Performance testing with chemistry reaction datasets
We simulated the optimization model on three previously published 
chemistry reaction datasets consisting of a variety of conditions applied 
to a broad scope of substrates: a nickel-catalysed borylation dataset 
previously investigated by Bristol Myers Squibb (BMS)45, a deoxyfluori-
nation dataset from the Doyle group46 and a Buchwald–Hartwig C–N 
cross-coupling dataset47, all with the aim of finding the most general 
conditions with different reactivity metrics (Fig. 2a). For every dataset, 
the most general conditions were first determined through analyses of 
reaction yield distributions (Fig. 2c; see Supplementary Information 
for detailed yield analyses on all datasets). Optimization runs were 
then simulated by iteratively allowing the bandit algorithms to propose 
experiments and providing the algorithms with actual experimen-
tal results. For all three reactions, we used the Bayes UCB algorithm 
with beta prior for binary metrics and Gaussian prior for continuous 
metrics (see Supplementary Information section 8 for performance 
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comparison with other algorithms). After each round, the learning 
model updated its beliefs for the reaction scope, and this process was 
continued until a specified number of experiments was reached. This 
simulation process was repeated many times (for example, 500) and 
the top-n accuracy was used as a metric to compare algorithm perfor-
mances. Top-n accuracy was calculated as the relative frequency of the 
model correctly identifying the top-n conditions with data collected 
up to time point t across all simulations.

To confirm that meaningful learning took place with the devel-
oped model, we established baselines for comparison of each data-
set. The first is a pure exploration baseline in which the conditions 
are randomly selected for evaluation. The other baseline strategy, 
explore-then-commit (ETC), tries each condition during the explora-
tion stage and exploits by committing to the best option from explo-
ration. To compare with other algorithms, at any given time point, 
the best empirical option from all previous, completed exploration 
rounds is identified. After a new round of exploration is complete, 
ETC re-evaluates and chooses a new option that appears best with the 
inclusion of new data, and its accuracy is also updated accordingly, 
yielding a stepwise accuracy baseline. The pure exploration and ETC 
baselines exhibit similar accuracies in practice because of the similar 
concept of uniform exploration, with ETC being less noisy because of 
the more structured exploration by round. These two baseline strate-
gies mimic the state-of-the-art multi-substrate screening approaches, 
in which different combinations of substrates and conditions are evalu-
ated, and the most general condition is chosen based on the average 
performance using all available data. Compared with ETC baselines, 

the bandit algorithms achieved substantial improvements in accura-
cies for all three datasets (28%, 31% and 8%) within 100 experiments 
(Fig. 2b). An accuracy improvement of 30% indicates that the probabil-
ity of finding general conditions within a relatively low experimental 
budget is better when pursuing the bandit strategy compared with 
the baselines. For the C–N cross-coupling dataset, the ETC strategy 
reached high accuracy (>80%) because each round of exploration 
costs at most four experiments. Despite the high baseline accuracy, the 
highest-performing bandit algorithm still achieved an 8% improvement 
in accuracy. To evaluate the data efficiency of the bandit algorithms, 
we simulated a palladium-catalysed C–N cross-coupling reaction 
dataset with more than 3,600 experiments (Extended Data Fig. 1a,b)48. 
The best-performing Bayes UCB algorithm achieved more than 90% 
accuracy after exploring only 2% of the reaction scope (72 reactions) 
(Extended Data Fig. 1c). We also visualized the experiments selected by 
the Bayes UCB algorithm at different time points in a single optimiza-
tion run (Extended Data Fig. 1d) to illustrate the general behaviour of 
bandit algorithms (further discussion can be found in Supplementary 
Information section 8.5). Taken together, these results validated that 
the bandit algorithms can be successfully translated to chemistry reac-
tion data and are accurate in finding the most general conditions for 
various reactions, condition precisions and optimization objectives.

Optimization study 1: C–H arylation reaction
Next, we set out to evaluate the bandit algorithms on unseen data for 
distinct chemical transformations. A reaction dataset with many diverse 
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substrate pairings and calibrated reaction yields for all products under 
the same environment, that which is also sufficiently large for model-
ling, would be ideal to evaluate the performance of generality optimi-
zation algorithms in a regime in which multiple substrate dimensions 
simultaneously interact with conditions. Owing to the lack of these 
datasets in the literature, we decided to collect a palladium-catalysed 
imidazole direct C5-arylation dataset that satisfies these require-
ments. This dataset builds on a C–H arylation dataset investigated in 

a previous collaboration between the Doyle group and BMS25, in which 
the conditions were extensively surveyed with a single pair of sub-
strates. However, in this case, we expanded the substrate dimensions 
of both imidazoles and aryl bromides and specifically studied ligand 
effects with an expanded ligand scope. A total of 64 unique C5-arylated 
imidazole products were generated from eight imidazoles and eight  
aryl bromides, each evaluated with 24 ligands yielding 1,536 total reac-
tions (Fig. 3a).
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We first retrospectively analysed the dataset by mimicking a tradi-
tional model substrate approach, in which the ligands are screened 
with a model substrate (or product) to identify the highest-performing 
ligand as optimal. For each of the 64 products in the scope, we filtered 
out products (40 out of 64) that did not achieve a reaction yield above 
75% (these reactions can usually be considered as ‘not optimized’ in 
practice). For the rest of the products, the highest-yielding ligand was 
selected (Fig. 3b). Twelve out of 24 ligands in the scope can be consid-
ered as ‘optimal’ with different substrate pairings. Most of these ligands, 
however, are non-optimal when considering all 64 products. The most 
notable example, PPh3, is the optimal ligand for imidazole C with multi-
ple aryl bromides, but its average yield over all products is only 32.4%, 
compared with 46.2% for CyBippyPhos. Moreover, our previous HTE 
study of C–H arylation25, in which imidazole C and aryl bromide 7  
were used as model substrates to evaluate 1,984 different reaction 
conditions including 14 monophosphine ligands, identified CgMe-PPh 
as the optimal ligand almost exclusively (19 out of top 20 conditions, 
with the only other ligand being PPh3). These analyses highlight that 
a traditional screening approach with a model substrate, even after 
extensive exploration of the condition space, does not usually produce 
a satisfying general condition. By contrast, simulating the bandit model 
with this dataset showed an 85% top-5 accuracy (Fig. 3e, compared with 
the 71% explore-then-commit baseline) and a > 95% top-9 accuracy on 
average after 200 experiments (see Supplementary Information for 
detailed simulation studies of this reaction). Non-optimal ligands, such 
as PPh3, are almost always excluded from consideration by the model, 
thus reducing bias when choosing general conditions.

A key advantage of the bandit optimization model is that no search 
space needs to be explicitly defined. Reactivity responses from vari-
ous substrates are treated as feedback from the environment that the 
algorithm is learning from. This means that the substrate scope, as 
part of a dynamic environment, can arbitrarily change on the fly and 
the model can learn these changes continuously from the feedback it 
receives during optimization. It is common in practice to expand the 
substrate scope and further evaluate the use of a developed method, 
which can affect how generally applicable a condition is and the ability 
of the optimization model to select these conditions. For this problem 
setting, we designed a test scenario in which both the imidazole and 
aryl bromide scopes available to the algorithm were restricted at first 
and expanded during optimization. Four imidazoles (A, B, C and D) 
and four aryl bromides (1, 2, 3 and 4) constituted the initial scope, 
defined as phase I. After 50 experiments in phase I, the imidazole scope 
was expanded to include four additional imidazoles (E, F, G and I), 
creating 16 new potential products in phase II. After 50 experiments in  
phase II, the aryl bromide scope was expanded again to include four 
more aryl bromides (5, 7, 9 and 10), creating 32 new potential pro-
ducts in phase III (Fig. 3c). Although phases I and II experience similar 
rankings for the top-5 ligands, the relative order changes in phase III 
after the addition of four aryl bromides (Fig. 3d). During optimization 
simulations, the individual accuracies over time for each of the top-5 
ligands were tracked and compared (Fig. 3e). The model correctly iden-
tified the initial ligand reactivity rankings in phases I and II. When the 
reactivity ranking was changed in phase III, the algorithm did not over-
commit and successfully adjusted its belief in ligand performance by 
increasingly sampling Cy-BippyPhos (red) and Et-PhenCarPhos (blue), 
the top-2 performing ligands. The previous top ligands, tBPh-CPhos 
(orange) and JackiePhos (purple), were downgraded by the algorithm 
in phase III. We also compared the accuracy of Cy-BippyPhos under 
a substrate expansion regime with the accuracy of Cy-BippyPhos 
obtained from a separate optimization simulation in which the full 
substrate scope is always available for the algorithm to sample from. 
Although the initial accuracies understandably differed because 
of the different reactivity distributions in phases I and II, the end  
accuracies at experiment 200 are similar despite the differences in the  
initial sampling pools.

Optimization study 2: amide coupling reaction
Owing to the prevalence of amide bond structures in biological systems 
and pharmaceutical compounds, amide coupling reactions are the 
most commonly used reactions in medicinal and process chemistry49. 
Carboxylic acids are often preferred as inexpensive and abundant start-
ing materials. Their chemical stability, while desirable on account of the 
ease of handling on scale, necessitates activation by coupling reagents, 
usually through in situ formation of an acid halide or anhydride. Despite 
the vast number of activators (>200) developed for amide coupling 
reactions50, chemists often resort to a few routine reagents on the basis 
of their proven reliabilities51. However, the efficacy of these coupling 
reagents when applied to specific target substrates is still difficult to 
assess a priori, especially for the challenging coupling with weakly 
nucleophilic anilines. Aniline deactivation from the aromatic system, 
as well as accompanying steric and electronic demands from various 
substituents, complicates the selection of productive coupling rea-
gents. Other aspects of reaction conditions, such as bases and solvents, 
can also affect reactivity.

Using the late-stage functionalization of indomethacin, a commonly 
prescribed nonsteroidal anti-inflammatory drug (NSAID), as an exam-
ple, we sought to demonstrate the ability of the bandit model to identify 
generally applicable amide coupling conditions when faced with a 
diverse scope of aniline substrates and reaction conditions (Fig. 4a). For 
the defined reaction scope, we attempted to identify the most general 
activator–base combinations. Not expecting a notable solvent effect 
between the three solvents chosen (THF, MeCN and DMF), we prioritized 
activators and bases because they often work in tandem and generate 
reactive intermediates, which can affect amide coupling reactivity. 
We first aimed to filter out less-effective activators by setting the opti-
mization objective to activators alone. Unlike simulation studies in 
which real-time feedback was immediately provided for each proposed 
experiment, experiments proposed in batch are necessary in practice 
to maximize time efficiency, resulting in a delayed feedback setting. 
Similar to a kriging believer52,53 in a sequential optimization problem, 
our implementation of batched bandit optimization uses a separately 
trained random forest prediction model with existing data. Both the 
optimization model and the prediction model were updated when 
experimental feedback became available. After eight rounds of initial 
experiments (five experiments per round), activ ators were ranked by 
reactivity based on the beliefs of the model, and the bottom four acti-
vators (PFTU, HOTU, HATU and PyBOP) were eliminated. For the four 
remaining activators (DPPCl, BOP-Cl, TCFH and TFFH), the optimiza-
tion objective was modified to activator–base combinations. Relevant 
data for the four activators retained were recycled and incorporated 
as knowledge of the new objective by the optimization model. After 16 
additional rounds of experiments, all activator–base combinations were 
again ranked by projected reactivity (top nine conditions are shown in 
Fig. 4b). Overall, about 12% of the reaction scope were experimentally 
explored following the suggestions of the model.

To conclusively evaluate the resulting rankings from our model, we 
collected experimental results for all remaining reactions not explored 
during optimization and analysed true reactivity rankings for activators 
and activator–base combinations for comparison. The model correctly 
identified and ranked the top three activators during the activator 
selection phase. For activator–base combinations, top nine out of 
10 combinations were identified, with the top four correctly ranked. 
Interestingly, HATU–DIPEA, one of the most commonly applied amide 
coupling activator–base combinations54, was the only condition not 
selected in top 10 as HATU was eliminated in the initial rounds. Use of 
DPPCl (diphenylphosphinic chloride) with NMM or DIPEA yielded the 
most effective general reaction conditions, ranking number one and 
two, respectively. Using HATU–DIPEA as a benchmark, the average 
yields over three solvents (THF, MeCN and DMF) for DPPCl–NMM and 
DPPCl–DIPEA for each aniline substrate were also analysed (Fig. 4d). 
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DPPCl–NMM significantly outperformed, or at least matched, HATU–
DIPEA for most anilines (except n10), including highly deactivated 
anilines (n1) and sterically hindered anilines (n8). When compared with 
TCFH–NMI, a reagent combination developed by BMS for challenging 
amide coupling reaction with non-nucleophilic amines55, DPPCl also 
exhibited superior reactivities for selected anilines (for example, n7). 
Although not a commonly used amide coupling reagent, the optimiza-
tion results suggest that DPPCl can be effective for amide coupling with 
anilines. Effective amide couplings using DPPCl have been separately 
investigated by BMS56. The desirability of DPPCl-mediated amide cou-
pling in commercial routes, owing to its exceptional thermal stability57 
and improved atom economy compared with the mechanistically simi-
lar but much more common activator T3P, has also been demonstrated 
on multi-kilo scales58.

Finally, we evaluated the accuracy of the final prediction model from 
the last round of optimization with measured ground truth data for 

the full scope. The random forest model was only trained with 12.5% 
of the data from the reaction scope explored during optimization 
but exhibits good prediction accuracy for unexplored experiments 
involving both activators retained and eliminated after initial experi-
mental rounds (12% mean absolute error for both, Fig. 4c). The good 
accuracy of the prediction model under a low-data regime further 
validates the approach of using a supervised machine learning model 
to predict experimental results in a delayed feedback setting during 
optimization.

Optimization study 3: phenol alkylation reaction
The prevalence of alkyl aryl ethers in natural products and pharma-
ceuticals has prompted developments in mild and general syntheses 
of these products. Despite advances in transition-metal catalysed C–O 
cross-coupling reactions59, traditional approaches, such as Williamson 
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Fig. 4 | Optimization studies of an amide coupling reaction with anilines.  
a, The substrate and condition scope for the amide coupling reaction. The 
structures of bases and activators are included in Supplementary Information. 
b, Algorithm rankings for activators after eight rounds of experiments  
(five experiments per round) and algorithm rankings for activator–base 
combinations after 16 rounds of experiment (five experiments per round) 
using UCB1-Tuned as the selection algorithm. True rankings for activators  
and activator–base combinations from all experimental yields collected using 

HTE are shown in grey boxes for comparison. c, The performance of random 
forest prediction model trained with results from 24 experimental rounds. 
Predicted yields for the entire scope, further divided into three groups, were 
compared with true experimental yields. MAE, mean absolute error; RMSE, 
root mean square error; and R2, coefficient of determination. d, Average  
yields over three solvents (THF, MeCN and DMF) for identified conditions of 
DPPCl–NMM and DPPCl–DIPEA when applied to all 10 aniline nucleophiles. 
HATU–DIPEA and TCFH–NMI were used as baseline comparisons.
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ether synthesis60, Mitsunobu etherification61 and nucleophilic aromatic 
substitution (SNAr), are still widely used because of their simplicity. 
However, these reactions usually have limited functional group compat-
ibility. We decided to investigate a base-promoted phenol alkylation 
reaction with alkyl mesylates, which also suffers from similar substrate 
applicability issues, with the objective of identifying a more general 
condition.

Six mesylates and six phenols were selected from commercial data-
bases as substrates with varying structural motifs and complexities. We 
randomly left out one phenol (p5) and one mesylate (m1) as external 
testing substrates and did not include them in the optimization pro-
cess. As a result, 25 substrate pairings (five phenols × five mesylates) 
were sampled by the algorithm during optimization, and 11 unseen 
pairings (those with p5 and m1, including p5–m1) were tested after to 
externally validate the generality of the identified conditions. Six bases 
(inorganic and organic), two solvents and three temperatures were 
selected as the condition scope, totaling 36 overall conditions (Fig. 5a). 
Conditions selected by expert medicinal and process chemists at BMS 
and their corresponding reactivity data were used as a benchmark for 
the decisions of the bandit algorithm and optimization performance.

Using UCB1-Tuned algorithm, we conducted four rounds of optimiza-
tion with a total of 90 experiments (36, 18, 18 and 18 for each round; all 

conducted experiments are included in the Supplementary Informa-
tion section 11.3). The first round of experiments is a uniform explora-
tion of all conditions required by UCB-type algorithms. All conditions 
were sequentially explored with randomly sampled substrate pairings  
(21 out of 25 were sampled at this stage). Subsequent rounds of experi-
ments were chosen by the algorithm evaluating different conditions 
and substrate pairings. After 90 experiments, or 10% of the available 
reaction scope, the average yields and number of samples for each con-
dition were analysed (Fig. 5b and Supplementary Fig. 118). Notable base 
(BTMG) and temperature (60 °C) effects on reactivity were observed, 
with BTMG–t-AmOH–60 °C identified as the most generally applicable 
condition, achieving an average yield of 30.4% over five substrate pairs 
tested. Two conditions most commonly used and most successful in 
past HTE datasets at BMS, Cs2CO3–DMF–60 °C and K3PO4–DMF–60 °C 
were selected as benchmark conditions for comparison (Supplemen-
tary Information section 11.4). These three conditions were tested on 
11 unseen substrate pairings that involve phenol p5 and mesylate m1 
(Fig. 5c). Compared with the benchmark conditions, the algorithmically 
derived condition, BTMG–t-AmOH–60 °C, performed better (or at least 
comparably) in all except one substrate pairing (p5–m5). These results 
showed that bandit algorithms are compatible with continuous param-
eter optimization and can be used with batch sizes amenable to HTE. 
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Fig. 5 | Optimization studies of phenol alkylation with mesylates. a, The 
substrate and condition scope for the phenol alkylation reaction, with two 
external test substrates not included in optimization highlighted. b, Summary 
of experiments conducted after four rounds of optimization (90 experiments). 
For each condition, different substrate combinations were selected to test by 
the UCB1-Tuned algorithm, with the yields for each individual reaction shown 
with a colour scale. The white numbers represent the current average yields of 

all conditions based on reactions that have been run. c, Performance comparison 
of the optimal condition identified, BTMG–t-AmOH–60 °C, with two most 
commonly used phenol alkylation conditions at BMS (K3PO4–DMF–60 °C and 
Cs2CO3–DMF–60 °C) on 11 unseen substrate pairings. BTMG, 2-tert-butyl-
1,1,3,3-tetramethylguanidine; DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene; DMF, 
dimethylformamide; t-AmOH, tert-amyl alcohol.
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Furthermore, validation with unseen substrate pairings showed that 
the condition identified by the bandit algorithm during optimization is 
more generally applicable for the reaction scope, even when compared 
with conditions selected by practicing chemists that performed well 
in historical datasets.

Discussion
Our learning model can achieve data-efficient learning at high accu-
racies and has unique functionalities that we substantiated through 
the experimental investigations of three chemical transformations. 
Despite its advances, the optimization framework still has limitations 
and can be improved in a few areas. Given the typical experimental 
budget (100–1,000 experiments) and the efficiency of optimization 
(2–10% exploration of the scope needed), our approach is not suit-
able for the evaluation of a scope with thousands of possible condi-
tions. Rather, the condition scope needs to be reduced by expert 
chemists to selective conditions that show reactivity initially, so that 
more experimental resources can be spent on sampling substrates. 
Furthermore, the treatment of reaction conditions as independent 
arms in a stochastic multi-armed bandit problem setting means that 
there is no sharing of structural information between arms. Although 
effective in all our test cases, this approach can be inefficient when 
more than 100 conditions need to be simultaneously evaluated and 
significant correlations between conditions are present. Elimination 
of less effective conditions, as demonstrated in the amide coupling 
example (optimization study 2), can attenuate this problem. Alterna-
tively, suitable descriptors for conditions could be used to transfer 
knowledge between similar conditions, but the choice of descriptors 
is difficult to determine a priori. Finally, although we showed that the 
learning model can successfully adjust to a changing environment 
with unseen substrates and correctly identify most general conditions, 
addition of any new conditions will require additional sampling for the 
model to have an accurate estimation of their performance. This issue 
was partially addressed by the inclusion of a real-time supervised learn-
ing model, which can be used to extrapolate to unseen conditions and 
predict their effectiveness, but a more direct approach with knowledge 
transfer between arms is still desired.
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Methods

Detailed descriptions of bandit optimization algorithms implemented 
in this study, benchmark simulation testing of algorithms with syn-
thetic data, optimization model design for chemistry reaction data 
and global analysis and simulation of various reaction datasets can be 
found in the Supplementary Information. Dataset designs, procedures 
of high-throughput experimentation, authentic product syntheses and 
characterizations for the palladium-catalysed imidazole C–H arylation 
reaction, amide coupling reaction and phenol alkylation reaction are 
also included in the Supplementary Information.

Data availability
All reaction datasets evaluated in simulation studies and the two newly 
collected reaction datasets (the palladium-catalysed C–H arylation 
reaction and the amide coupling reaction) are available at GitHub 
(https://github.com/doyle-lab-ucla/bandit-optimization). Raw data 
logs from simulation studies with both synthetic data and chemis-
try reaction data are available at Zenodo (https://doi.org/10.5281/
zenodo.8170874).

Code availability
All source codes for implemented optimization algorithms and models, 
simulation methods for synthetic data and chemistry reaction dataset 

and analysis functions for data logs and optimization results are availa-
ble at GitHub (https://github.com/doyle-lab-ucla/bandit-optimization). 
The current release of the software is also available at Zenodo (https://
doi.org/10.5281/zenodo.8181283). 
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Extended Data Fig. 1 | Testing the bandit algorithms on a previously 
published C–N cross-coupling reaction dataset. a, General reaction scheme 
of the C–N cross-coupling reaction and reactivity heatmap grouped by base 
and ligand, with average yields for each base/ligand combination shown  
in white text. Structures for all substrates and conditions in the scope are 
included in the Supplementary Information. b, Top three most general base–
ligand conditions for the dataset. c, Average accuracies of identifying top-3 
conditions with various algorithms across 500 simulations with random  
starts. Exploration refers to the uniform exploration required by some 
algorithms, during which each condition is sequentially selected once. 

Different implementations of TS and Bayes UCB algorithms were used and 
differentiated by implementation 1 and 2 for simplicity. This plot is reproduced in 
Fig. S83, with the details of the algorithms included in the legend. TS: Thompson 
Sampling; UCB: upper confidence bound. d, Real-time optimization progress 
for simulation 0 (the first simulation) of a Bayes UCB (implementation 2) 
algorithm at n = 12, 30, 60, 99. Squares with different colors represent all 
reactions that have been suggested and evaluated by the algorithm at the time. 
The real-time empirical average for each base/ligand combination is shown in 
white texts.
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Extended Data Fig. 2 | Model architecture and workflow of bandit 
algorithms during reaction optimization. The bandit algorithm suggests  
a condition (an arm) to evaluate first. The chemist-designed reaction scope 
suggests a reaction to evaluate with the selected condition. The suggested 
reaction is tested experimentally, and the result is used to update both the 

reaction scope and the bandit algorithm for the next round of proposal. Finally, 
a prediction model, separately trained with existing experimental results,  
is optionally used to propose reactions to evaluate via other mechanisms  
(e.g., batch proposal).
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