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ABSTRACT: Herein we report a method for a stereoconvergent synthesis of
trisubstituted alkenes in two steps from simple ketone starting materials. The key step
is a nickel-catalyzed reduction of the corresponding enol tosylates that predominantly
relies on a monophosphine ligand to direct the stereoconvergent formation of either the
E- or Z-trisubstituted alkene products. Reaction optimization was accomplished using a
data science workflow including monophosphine training set design, statistical modeling,
and multiobjective Bayesian optimization. The optimization campaign significantly
improved access to both the E- and Z-trisubstituted products in up to ∼90:10
diastereoselectivity and >90% yield. After identifying superior ligands using training set
design, only 25 reactions were required for each objective (E- and Z-isomer formation) to
converge on improved reaction parameters from a search space of ∼30,000 potential
conditions using the EDBO+ platform. Additionally, a hierarchical machine learning
model was developed to predict the stereoselectivity of untested monophosphine ligands
to achieve a validation mean absolute error (MAE) of 7.1% selectivity (0.21 kcal/mol).
Ultimately, we present a synergistic data science workflow leveraging the integration of training set design, statistical modeling, and
Bayesian optimization, thereby expanding access to stereodefined trisubstituted alkenes.
KEYWORDS: alkenes, asymmetric catalysis, Bayesian optimization, statistical modeling, stereoconvergent synthesis

Trisubstituted alkenes find diverse applications as valuable
starting materials and intermediates in the synthesis of drug
substances and polymeric materials.1 Consequently, significant
effort has been devoted to developing efficient and selective
methods for their synthesis. While a myriad of existing
methods to synthesize trisubstituted alkenes have been
reported, many suffer from narrow substrate scope and
significant challenges associated with stereocontrol and
regioselectivity. The most popular strategies include alkyne
functionalization,2 cross-metathesis,3 and C−H functionaliza-
tion.4 Among the more robust methods to overcome
stereocontrol issues are stereoretentive metal-catalyzed cross-
couplings using stereodefined starting materials; however, this
approach requires access to diastereomerically pure alkene
substrates (Figure 1A).5 Conversely, many metal-catalyzed
examples are stereoinvertive whereby the stereoselectivity is
governed by thermodynamics. In stereoinvertive examples,
isomerization of the Z-alkene is facilitated by the catalyst
complex to generate the E-alkene.6 An attractive, and
potentially superior alternative would be the stereoconvergent
cross-coupling of diastereomeric mixtures of alkene starting
materials that can react and interconvert to primarily access
one isomeric product. We recently applied such a stereo-
convergent approach to the synthesis of tetrasubstituted

alkenes via nickel-catalyzed cross-coupling of enol tosylates
with various organometallic coupling partners such as Suzuki-
Miyaura boronic esters (Figure 1B).8 Our work stands apart
from thermodynamic control, as both E- and Z-alkene
products can be accessed selectively depending on the choice
of monophosphine ligand. Consequently, the reaction can
employ diastereomeric mixtures of enol tosylate substrates,
which further simplifies their preparation from readily available
ketone precursors. Data science tools were applied throughout
our optimization efforts, and this analysis uncovered a
significant influence of ligand structure on both the yield and
the diastereoselectivity of the reaction (Figure 1B). We
rationalized these ligand effects based on experimental
evidence and computational models supporting discrete
nickel-mediated isomerization events.7
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We subsequently endeavored to leverage this underutilized
alkene isomerization manifold toward the synthesis of
trisubstituted alkenes from diastereomeric mixtures of enol
tosylates by using alkylzinc coupling partners to afford a net
reduction of the carbon-tosylate bond (Figure 1C). Indeed,

when attempting to perform sp2-sp3 Negishi or alkylmagne-
sium couplings between the aforementioned enol tosylates and
alkylzinc partners containing β-hydrogen atoms, we observed
reduction to trisubstituted alkenes as a significant side reaction.
This presumably results from β-hydride elimination in
competition with reductive elimination of the transmetalated
alkyl-nickel intermediate (vide inf ra). Unfortunately, the
translation of our previous reaction conditions did not provide
acceptable yields or selectivity for the desired trisubstituted
alkene products. We viewed this as an opportunity to develop a
new transformation and implement a multifaceted machine
learning workflow for reaction optimization (Figure 2A).
Specifically, this reaction type requires the optimization of
multiple objectives, a rapidly evolving aim in the application of
machine learning in organic chemistry.9 Ultimately, the data
would be used to predict the diastereoselectivity in silico.
First, we planned to apply our recently reported computa-

tional database of calculated monophosphine descriptors to
define an unbiased training set of ligands.10 The training set
was selected through dimensionality reduction of the
descriptors and clustering to identify diverse monophosphine
ligands.11 This was followed by analysis of the experimental
outcomes using statistical models to determine the most
important ligand features. These features were then used to
define search spaces for the recently disclosed multiobjective
Bayesian optimization (EDBO+) algorithm to optimize yield
and stereoselectivity simultaneously (Figure 2A).12

This approach showcases the synergy between training set
design to identify high performing ligands, statistical modeling
to determine important descriptors, and Bayesian optimization
to accelerate the exploration of catalyst and reaction condition

Figure 1. (A) Synthesis of trisubstituted alkenes. (B) Previous
synthesis of tetrasubstituted alkenes via stereoconvergent cross-
coupling. (C) Ligand-directed reduction of diastereomeric mixtures
of enol tosylates to form stereodefined trisubstituted alkenes.

Figure 2. (A) Data science optimization workflow. (B) Monophosphine training set (blue) plotted against commercially available ligands (gray)
visualized with uniform manifold approximation and projection (UMAP). Original clusters were generated using principal component analysis and
k-means clustering, visualized here with UMAP for enhanced interpretability. (C) HTE results of monophosphine training set with color indicating
selectivity and data point size representing yield, visualized with UMAP. (D) Reaction conditions used in the HTE screening campaign with enol
tosylates S1 and alkene products P1-Z and P1-E. Improved ligands are highlighted for P1-E and P1-Z product formation relative to the initial “hits”
(assay yields determined by HPLC analysis).
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pairings, especially when multiple optimization objectives are
present. Notably, the training set of phosphine ligands
facilitated the exploration of broad regions of chemical space,
allowing us to pre-train the EDBO+ algorithm and expedite the
optimization process. Ultimately, we were able to identify
robust reaction conditions with optimized ligands to selectively
access either P1-E or P1-Z trisubstituted alkene product from a
50:50 diastereomeric mixture of enol tosylates S1 (Figure 2D).
As a final step, the experiments from the optimization
campaign were used as a training set in a low-data machine
learning model to predict E- vs Z-selectivity for previously
unexplored ligands.

■ RESULTS AND DISCUSSION
Training Set Design and Ligand Classification. Train-

ing set design is increasingly recognized as an essential tool for
successful optimization campaigns.13 Given the previous
structure−function relationship observed between phosphine
ligand identity and diastereoselectivity in the synthesis of
tetrasubstituted alkenes, we initiated our optimization by
selecting a structurally diverse training set of monophosphine
ligands.14 This strategy facilitates the selection of a relatively
broad sampling of ligand structures with the hypothesis that
diverse ligand structures will produce a range of reaction
outcomes.15 A data distribution with both low and high
selectivity is critical in the construction of robust statistical
models. Furthermore, training set screening facilitates the
discovery of structurally distinct, active ligand scaffolds. To
construct the chemical space of the monophosphine ligands,
Principal Component Analysis (PCA) was deployed as an
unsupervised dimensionality reduction technique using the
DFT-computed molecular descriptors from the kraken mono-
phosphine descriptor database (Figure 2B).10

This step was followed by training set selection using k-
means clustering to identify similar groups of phosphines based
on their molecular descriptors. From clustering analysis, 47
ligand clusters were identified and one ligand per cluster was
selected for screening via high throughput experimentation
(HTE, Figure 2B). The reactions were performed in duplicate
with one ligand-free control to assess reproducibility and
control for experimental error. This workflow produced a
standardized data set primed for analysis via statistical
modeling.
In general, most ligands under these conditions promoted

the formation of the E-alkene isomer (Figure 2C, yellow). In
particular, the E-alkene product (P1-E) was preferentially

produced, with triaryl and predominantly electron-deficient
phosphines being the most effective ligands (for example, L1,
Figure 2D). In contrast, the Z-alkene product (P1-Z) is
accessed via several ligands featuring a dicyclohexyl sub-
stitution pattern with a third, sterically encumbered
phosphorus substituent (as illustrated by L2, Figure 2D).
Using a statistically diverse training set of monophosphine
ligands allowed identification of ligands with divergent
reactivity that enhance the formation of either E- or Z-alkene
product. In particular, both the yield and selectivity of P1-Z
were greatly improved with L2 (CataCXium PCy), a
nonintuitive leap from our initial hit of tricyclohexylphosphine
(L12, Figure 2D).
Given these anecdotal structural differences, we sought to

further rationalize and quantify the physicochemical ligand
properties responsible for selectivity in this reaction. We
initially evaluated a binary classification algorithm as it offers a
simple means of categorizing the selectivity based on a single
molecular descriptor value.16 We first focused on identifying
which ligand features lead to high selectivity, irrespective of the
isomer formed. A single node decision tree was applied to bin
the absolute value of selectivity (ΔΔG‡) to a mechanistically
relevant kraken descriptor (Figure 3A, code available on
GitHub).10 The decision tree selection procedure iteratively
computes accuracy and F1 score for the data set with each
molecular descriptor in the kraken library, penalizing false-
negatives with a 10:1 weighting. This weighting ensures all true
positive data points are correctly classified so no active ligands
are overlooked. This analysis resulted in a model using the
minimum buried volume (Vbur(min)) molecular descriptor,
which describes the smallest volume a ligand can adopt within
a 3.5 Å sphere centered on the metal. We have previously
found Vbur(min) to be a surrogate for the ligation state in Ni-
and Pd-catalyzed reactions.17 The results indicated that
monoligated (L1) Ni-species associated with large Vbur(min)
values (>58.2 Å3, or >32% in the original publication) lead to
poor selectivity for either isomer (Figure 3A). This process
allows the curation of the data set to focus on ligands
presumed to be bisligated (L2) and remove data associated
with nonselective ligands. To further explore the differentiating
factors between P1-E and P1-Z product formation, we next
performed a single-node decision tree on the active L2 ligands,
now differentiating between E- and Z-measured selectivity.
A correlation to the minimum pyramidalization (Pmin)

divided two groups of ligands that form stereochemically
distinguished products (Figure 3B). Pyramidalization measures

Figure 3. (A) Selectivity classification using the absolute value of ΔΔG‡ to normalize E- and Z-selectivity, plotted against minimum buried volume
(Vbur(min)). Classification threshold (red dotted line) at 58.2 Å3 Vbur(min) (or 32.4% Vbur(min)), and 0.4 kcal/mol ΔΔG‡. (B) Classification with
minimum pyramidalization (Pmin). Classification threshold at 0.91 units, Pmin.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.4c00650
ACS Catal. 2024, 14, 4699−4708

4701

https://pubs.acs.org/doi/10.1021/acscatal.4c00650?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c00650?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c00650?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c00650?fig=fig3&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.4c00650?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the deviation from trigonal planar geometry influenced by the
repulsive and attractive forces of the substituents on
phosphorus.18 The “minimum” of pyramidalization refers to
the lowest value across a conformational ensemble for each
ligand.10 Trigonal pyramidal ligand geometries are associated
with the formation of the E-alkene isomer (Pmin>0.91).
Conversely, more planar ligands perturbed from the ideal
trigonal pyramidal geometry promote the formation of Z-
alkenes (Pmin<0.91). Both classification models support the
conclusion that steric interactions of the ligand with the
substrate substantially influence the E/Z isomerization during
the catalytic cycle (vide inf ra).19 While a single molecular
descriptor does not explain the selectivity observed for every
ligand, both the Pmin and Vbur(min) thresholds point to an ideal
range of steric bulk that favors the formation of the E- or Z-
trisubstituted alkene product.
This initial optimization campaign identified several ligands

capable of achieving promising yields and selectivity for both
alkene isomers (Figure 2D). However, it was unclear if we had
determined global maxima for each diastereoselective regime,
especially considering this evaluation focused primarily on
ligand structure. When considering the dimensionality of the
other reaction variables, Bayesian optimization was chosen as
an efficient statistical approach to reduce the required number

of experiments, while still considering all optimization
variables.20

Multiobjective Bayesian Optimization (EDBO+). In-
tegrating training set design, statistical modeling, and Bayesian
optimization (BO) offers significant advantages over design of
experiments (DOE) or intuition-guided optimization methods.
The key strength of BO lies in its ability to relate prediction
and uncertainty.21 Unlike DOE, Bayesian optimization
incorporates information about the uncertainty of predictions,
enabling the prioritization and weighting of proposed experi-
ments based on the likelihood of success.22 Furthermore, BO
can incorporate many variables, including discrete variables
such as reagents and ligands, that can dramatically increase the
dimensionality of the search space; therefore, BO reduces the
experimental workload. In BO, input data is modeled using a
surrogate function, which approximates the overall reaction
surface and predicts uncertainty across different regions of that
surface. Subsequently, an acquisition function combines the
modeled reaction surface and associated uncertainty to select
experiments that balance exploration and exploitation.23

Exploratory experiments aim to uncover regions of the reaction
surface with large predicted uncertainty, while exploitative
experiments focus on sampling areas near the predicted local
maximum. This interplay between exploration and exploitation

Figure 4. (A) Search space components for both E- and Z-selective EDBO+ campaigns. Reductants, solvents, concentration, and temperature were
consistent between both search spaces, and different ligands were selected to promote the formation of E- vs. Z-products. (B) EDBO+ round-over-
round improvement visualized by inverse distance to ideal (distance of each data point to 100% yield and 100:1 selectivity) and decrease in
predicted variance. Yield and selectivity data were obtained from quantitative 1H NMR with 1,3,5-trimethoxybenzene as the spectroscopic standard
(see SI for details). (C) Final conditions and improvement in E- and Z-alkene formation from EDBO+ campaign.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.4c00650
ACS Catal. 2024, 14, 4699−4708

4702

https://pubs.acs.org/doi/10.1021/acscatal.4c00650?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c00650?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c00650?fig=fig4&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acscatal.4c00650/suppl_file/cs4c00650_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c00650?fig=fig4&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.4c00650?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


allows for rapid identification of improved reaction conditions.
Statistical sampling of the reaction surface, instead of sampling
random or extreme points, is highly efficient in capturing the
nonlinear relationships between reaction components. The link
between predicted uncertainty and global maximum provides
valuable information to streamline the optimization process.
The curation of the search space and careful selection of

variables play a crucial role in successful optimization
campaigns. Prior knowledge of reaction sensitivities signifi-
cantly aids in determining which variables to include or
exclude. In this study, we selected focused search spaces to
optimize for the formation of P1-E and P1-Z products
independently. We constructed search spaces to uncover the
nuanced interdependence of different reaction components,
exploiting the knowledge gleaned from our diverse training set
of phosphines and additional control reactions. Several of the
top-performing phosphine ligands from the training set were
selected to include in the initial search space due to the ligands’
strong influence on selectivity (Figure 4A). The included
phosphine molecular descriptors for the search space were
identified using multivariate linear regression modeling to find
the most highly correlated descriptors. These descriptors were
further curated based on chemical expertise (see SI for details).
Other critical variables such as solvent, reductant, temperature,
reaction concentration, and catalyst loading were incorporated
in both search spaces for a total of 33,600 possible conditions
in the E-search space and 29,400 combinations in the Z-search
space (see SI for details).24 The EDBO+ model was then
initialized with Gaussian Process Regression (GPR) and
expected hypervolume improvement (qEHVI) as surrogate
and acquisition functions, respectively.12 The training set data
was used to pre-train these models, and suggested five
experiments for each isomer campaign round (E and Z).
The number of experiments was set as a user defined
hyperparameter to balance experimental throughput and the
model training rate. Yield and selectivity data were acquired via
quantitative 1H NMR with 1,3,5-trimethoxybenzene as the
spectroscopic standard. The EDBO+ model was then updated
with the new round of data and the next set of experiments
were suggested. This cycle continued until the predicted
uncertainty and predicted improvement converged over five
rounds (Figure 4B).
After concluding the optimization, selectivity for the

formation of P1-E product had improved from 87:13 to 91:9
E:Z using L1 (+0.5 kcal/mol) with a high yield of 94% (Figure
4C). Though the formation of P1-E maintained a high yield
throughout the EDBO+ rounds, the best reaction conditions
were obtained from BO round four (Figure 4B). The
optimization campaign for the P1-Z alkene was initiated at a
more challenging starting point, initially using PCy3 (L12,
69:31 Z:E and 35% yield) as the ligand prior to the HTE
campaign (Figure 2D). Two ligands identified in the HTE
campaign performed particularly well, L2 and L10 (Figure 5).
Both contain the conserved PCy2(Ar) structural scaffold
common in Z-selective ligands. The CataCXium PCy ligand
(L2)25 offers robust conversion, albeit with slightly reduced
diastereoselectivity relative to the PCy2(o-tolyl) ligand (L10,
up to 91:9 Z:E). Ultimately, we chose to prioritize L2 due to
its suitable selectivity and robust yield of the Z-alkene.
Through all our optimization efforts, the Z-alkene formation
metrics improved by 2.5-fold in yield (92%) and from 69:31 to
88:12 Z:E selectivity (+0.7 kcal/mol) after the HTE campaign
and 25 EDBO+ guided experiments.

Overall, we determined that the ligand was the most crucial
factor in directing selectivity; however, solvent, reductant, and
temperature all play a nuanced role. Ultimately, we performed
only 50 reactions after the HTE campaign to optimize these
two divergent stereochemical goals. In our experience, this is a
relatively modest number of experiments in the context of
multiple optimization objectives with >30,000 possible
combinations.
Mechanistic Considerations. Based on our previous

efforts and experimental results, a catalytic cycle is proposed
for this transformation (Figure 6A). First, oxidative addition

into the enol tosylate I (E or Z) produces the vinyl-nickel
species II, followed by facile isomerization to interconvert E-
and Z-isomers of complex II. During the investigation of the
stereoconvergent nickel-catalyzed Suzuki-Miyaura reaction, we
determined that extensive isomerization of the oxidative
addition complex occurs, with selectivity linked to the ligand
identity.8

To identify if the isomerization process obeys the Curtin-
Hammett principle, we initiated the reaction with different
diastereomeric ratios of enol tosylate substrates S1 (Figure

Figure 5. Top-performing E- and Z-selective ligands.

Figure 6. (A) Proposed catalytic cycle. (B) Curtin-Hammett studies
to assess the influence of starting material geometry on selectivity.
Selectivity and yield determined by 1H NMR spectroscopic analysis.
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6B). If the reaction is under Curtin-Hammett control, then by
definition, isomerization is faster than the subsequent stereo-
determining step, and starting material geometry should have
no effect on the resulting selectivity.26 We observe that only
the Z-selective reaction (conditions C2) obeys the Curtin-
Hammett principle, whereby the diastereoselectivity for
product P1 does not depend on the geometry of the starting
material S1 (Figure 6B, C2 conditions). This is consistent with
our previous results, indicating the C1 conditions for selective
E-alkene formation may promote a “kinetic quench scenario”
in which the barrier to isomerization is competitive with that of
the stereodetermining step.27 This allows for enhanced
selectivity when using the corresponding S1-Z starting
material, favoring stereoretentive formation of the P1-E alkene
product. Following oxidative addition, we propose that
transmetalation of II with the alkyl zinc reagent gives rise to
Ni-alkyl species III. This pendant Ni−alkyl can then undergo
β-hydride elimination through a four-coordinate transition
state to yield complex IV.
Several examples6 of Ni-mediated alkene isomerizations take

advantage of the steric driving force to convert Z-alkenes to the
less strained E-alkenes (Figure 7A). These stereoinvertive

mechanisms involve exogenous Ni-hydride (Ni−H) addition
across the alkene. To test for this pathway and assess the
potential impact of off-cycle Ni−H species in our reaction
system, we designed a crossover experiment that was
performed by subjecting a single isomer of each product
(P1-E or P1-Z) to the reaction conditions and monitoring any
subsequent isomerization (Figure 7B). A substituted enol
tosylate substrate (Figure 7B, S6) was also included to
generate the relevant oxidative addition and transmetalation
catalytic intermediates and replicate any potential off-cycle
species.28 Complete recovery of both products P1 was
observed with no erosion of diastereomeric purity, indicating
that an off-cycle Ni−H-mediated isomerization of P1 is
unlikely under these reaction conditions. The results of the
crossover study further suggest that the trisubstituted alkene
products are stable to the reaction conditions, and thus
reductive elimination is likely irreversible. Our prior inves-

tigation of the Suzuki-Miyaura reaction mechanism indicated a
complex isomerization landscape, with multiple factors
influencing selectivity.8

Reaction Scope. The reaction scope was assessed with
several structural perturbations to the initial model system S1/
P1 (Figure 8A). Overall, the reactions to form E-alkenes with

P(m-FC6H4)3 (L1) as the ligand are robust to substrate
modifications, including electron donating and withdrawing
groups and modification of the aromatic rings, with yields of
typically >80% and diastereoselectivities up to 92:8 E:Z
(Figure 8A, conditions C1). Not surprisingly, the reactions to
form sterically congested Z-alkenes were more challenging
(Figure 8A, conditions C2). We observed enriched mixtures of
Z-products for both electron-rich and -poor aromatic rings,
albeit with reduced selectivity in some cases. The product E-
isomer can be enriched by leveraging the kinetic quench

Figure 7. (A) Ni−H mediated isomerization. (B) Crossover
experiment: yield and selectivity determined by HPLC and 1H
NMR spectroscopic analyses. S6 produces corresponding reduced
products P6, see SI for details. C1 conditions: Ni(acac)2 (5.0 mol%),
L1 (10 mol%), n-BuZnBr (2.0 equiv), n-Bu2O (0.05 M), 50 °C, 24 h.
C2 conditions: Ni(acac)2 (5.0 mol%), L2 (15 mol%), n-PrZnBr (3.0
equiv), CPME (0.05 M), 50 °C, 24 h.

Figure 8. (A) Stereoconvergent scope examples from 50:50 E:Z enol
tosylate. Selectivity was determined from 1H NMR analysis of the
crude reaction mixture. Isolated yields were reported for mixtures of
isomers, isolated selectivity is reported in the SI. *P5-Z: isolated
selectivity reported. **P7-Z: 10 mol% Ni(acac)2 and 30 mol% L2.
(B) Stereoenriched scope starting from Z-enol tosylates under C1
conditions. Selectivity was determined by crude 1H NMR analysis.
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scenario of the Curtin-Hammett principle and using stereo-
defined starting materials (Figure 8B). When diastereomeri-
cally pure Z-enol tosylates are employed as substrates under
conditions C1, the diastereoselectivities for the formation of
the E-products are enhanced, as depicted in Figure 6B. Overall,
the reaction scope demonstrates that a variety of conjugated
trisubstituted alkenes can be synthesized diastereoselectively
with this method. The diastereomeric mixtures of starting
materials can be prepared in two steps from readily available
ketones, obviating the need for the challenging preparation of
stereodefined starting materials5c,29 and the proper choice of
stereoretentive or stereoinvertive cross-coupling methods
(Figure 1).
Selectivity Predictions Using Machine Learning. By

taking advantage of a rich data pool of 242 data points from
the HTE and EDBO+ campaigns, we developed a model to
predict the selectivity for untested ligands in the kraken library.
Initially, the training set of monophosphine ligands included
only commercially available ligands, as our goals involved
profiling ligands in the lab. This initial assumption narrowed
our search for the best monophosphine ligands to 300
commercially available structures.30 While we were able to
identify two highly active and selective ligands for the
formation of both the E- and Z-alkenes from this pool, we
became curious if we had overlooked fruitful regions of
chemical space, particularly in the more challenging Z-selective
regime. To leverage the existing data collected from the HTE
campaign, we first curated it by removing results with
discrepancies of greater than 15% yield or 5% selectivity
between duplicate runs (see SI for details). Several machine
learning algorithms were assessed, and Gaussian Process
Regression (GPR) resulted in the lowest mean absolute error
(MAE) with respect to product selectivity (base model, Figure
9A). Due to the small data set size (for machine learning
algorithms) and the extensive influence of ligand choice on
selectivity, the base model’s predictive power was assessed
using leave-one-ligand-out cross-validation, where all reactions
with a specific ligand were removed from the training set and
used in the validation set. This process was repeated for each
ligand in the training set, producing an MAE of 8.1% (ΔΔG‡ =
0.24 kcal/mol). Seeking to improve the model further, we
implemented a hierarchical learning algorithm inspired by the

work of Hong and co-workers.31 In this regime, the data set is
divided into multiple subsets and a set of additional models are
used to predict the error of each subset produced by the base
model. The predicted errors are then summed with the
selectivity predictions from the base model to afford a
composite prediction with higher accuracy.
Specifically, two delta models were trained on the

partitioned data set, triaryl monophosphines (ΔPAr3) and
non-triaryl monophosphines (ΔPR3). This allowed a more
fine-tuned prediction that captures the structural deviations in
each partition. Additionally, dividing the data set into PAr3 and
PR3 was chemically intuitive as it roughly partitioned ligands
that induce E- vs. Z-alkene formation, respectively.
GPR was used for both the base model and the delta models

with identical hyperparameters. For each of the models, a
greedy sequential feature elimination with the identical GPR
model was used to select the features for the corresponding
data sets, yielding three distinct sets of features. This workflow
improved the accuracy to a MAE of 7.1% (ΔΔG‡ = 0.21 kcal/
mol Figure 9A). Next, we evaluated the final predictions to
decide which ligands to evaluate experimentally. We included
our top-performing ligands in this prediction to validate model
accuracy further. For each ligand, the composite model also
predicted the best reaction conditions from the search space
for a total of 5.9 million combinations. Since the E-alkene
forming reaction had achieved both a robust yield and >90:10
E:Z selectivity, we selected two commercially available ligands
to validate the ΔPAr3 model (Figure 9B, L16, L17). These
ligands were predicted to be interpolations, with selectivity
below our top-performing ligand L1. Despite the structural and
electronic differentiation of L16 and L17, we were able to
accurately predict the selectivity of these structures, thus
validating our ΔPAr3 model. Next, we chose three highly
ranked ligands for assessing the formation of the Z-alkene
product, as this reaction had proven more challenging. Besides
our optimized ligands L2 and L10, the composite model
ranked several other intriguing ligand motifs with a high
probability of success. The predicted ligands were selected by
triaging the 20 highest selectivity predictions, including
commercially unavailable structures. First, ligands tested in
the training set were removed, followed by synthetically
inaccessible structures and incompatible functional groups (see

Figure 9. (A) Model development workflow for extrapolation ligand predictions. (B) Predicted E-selective ligands (L16−L17) and two of the three
predicted Z-selective ligands (L18−L20) perform similarly to top-performing ligands (L1 and L2) from the optimization campaign.
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SI for details). Intuitively, these predicted ligands are
structurally similar to our top-performing scaffolds, adding
confidence that our predictions would perform well in the
reaction.
We were delighted to see ligands bearing a pyrrole scaffold

maintained robust conversion and delivered high selectivity.
P(i-Pr)2(N-phenyl pyrrole) (L18, Figure 9B) produced a
competitive yield and selectivity to our best ligand, CataCXium
PCy (L2). Additionally, L19 maintained good conversion of
starting material, albeit at reduced selectivity. The final
predicted ligand had low conversion, indicating it is incapable
of promoting catalysis (L20, Figure 9B). This outcome may be
the result of our specific focus on predicting selectivity, the
more challenging reaction metric to achieve in this particular
reaction. In summary, the pyrrole scaffold is uniquely suited in
achieving high conversion to the Z-alkene.
This workflow enabled selectivity prediction for ∼1200

monophosphine ligands, resulting in a robust model with
multiple successful projections. The development of the
composite model highlights several steps the modern data
chemist can take to refine model predictions in complex
reaction optimization campaigns. Furthermore, this strategy
validates the concept that diverse training sets are critical to a
broad exploration of chemical space. The composite model
was trained on the HTE and EDBO+ data, allowing for a
diverse sampling across the kraken library and resulting in
accurate selectivity predictions for a wide range of ligand
scaffolds.

■ CONCLUSIONS
The catalytic, stereoconvergent synthesis of trisubstituted
alkenes presented herein demonstrates the synergy of training
set design, statistical modeling, and Bayesian optimization in
addressing the challenges associated with reaction develop-
ment. Data collected from the training set was critical to
selecting ideal catalyst complexes to incorporate into the
EDBO+ search space. We were further able to inform and
streamline our Bayesian optimization campaign to focus the
search space and direct optimization to the most fruitful
reaction conditions based on an initial set of 96 high-
throughput experiments.32 This strategy additionally mini-
mized the required number of experimental sampling rounds,
as we could pretrain the EDBO+ surrogate function with
existing HTE data and thus allow for rapid identification of the
global maxima across a well-established reaction surface.
Where traditional one-factor-at-a-time or design of experi-
ments (DOE) optimization consider select ranges of only a few
variables (e.g., solvent, temperature, ligand), EDBO+ allowed
us to profile a combinatorial reaction space of >30,000 reaction
conditions and arrive at improved conditions for E- and Z-
alkene formation within just 25 experiments each. Using the
data in hand, we were able to construct a composite model to
predict the selectivity of all ligands in the kraken library. These
predictions were validated on selected ligands and included
identification of a highly active ligand L18, which promoted
the formation of the challenging Z isomer with high
diastereoselectivity.
Active regions of chemical space can be quickly identified by

leveraging a statistically sound training set and integrating
statistical modeling and optimization algorithms. The EDBO+
platform specifically allowed for the simultaneous optimization
of these two high-dimensionality reaction campaigns to

discover efficient reaction conditions and improved ligands
for the stereoselective synthesis of trisubstituted alkenes.
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