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A key challenge in synthetic chemistry is the selection of high-
performing ligands for cross-coupling reactions. To address this
challenge, this work presents a classification workflow to
identify physicochemical descriptors that bin monophosphine
ligands as active or inactive in Ni-catalyzed Suzuki-Miyaura
coupling reactions. Using five previously published high-
throughput experimentation datasets for training, we found
that a binary classifier using a phosphine’s minimum buried

volume and Boltzmann-averaged minimum electrostatic poten-
tial is most effective at distinguishing high and low-yielding
ligands. Experimental validations are also presented. Using the
two physicochemical descriptors from the binary classifier to
represent the chemical space of monophosphine ligands leads
to a more predictive guide for structure-reactivity relationships
compared with classic chemical space representations.

Introduction

One of the most interesting physical organic questions in the
development of catalysts for a particular reaction is why one
ligand is effective and another one that appears structurally
similar is not. As a step toward deconvoluting these subtleties,
our teams recently reported the integration of simple classi-
fication algorithms with an extensive feature database of
monodentate phosphine descriptors to uncover a “threshold”
reactivity relationship between ligand properties and effective-
ness in cross-coupling catalysis (Figure 1A).[1] In particular, the
descriptor %Vbur(min)[2] was found through a set of computa-
tional and experimental studies to be related to the ligation
state of a given metal, which was ultimately tied to catalytic
function. While initially developed for late transition metal
catalyzed cross-coupling reactions, both the classification tool
and the parameter have found use in a wide range of
applications since the initial report.[3–14]

A nuance of the algorithm (a single-node decision tree) is
that we purposefully penalize false negatives to ensure that
effective examples are not missed for downstream applications,
such as virtual screening or secondary statistical modeling
campaigns. In contrast, the algorithm does not penalize false
positives to the same extent, ultimately resulting in many more
examples of inactive catalysts in this regime of the confusion
matrix. It is not surprising that many false positives are found as
it suggests that another ligand feature is responsible for poor
performance. Therefore, we were inspired to reinvestigate the
original datasets to determine if another descriptor can be

identified to provide a second reactivity “threshold” (Figure 1B).
Herein we report the application of this strategy to five Ni-
catalyzed Suzuki–Miyaura coupling (SMC) reactions. Our inves-
tigation revealed that in addition to the threshold in %Vbur(min),
ligand activity is also gated by the Boltzmann averaged
minimum electrostatic potential at the phosphorus atom [Vmin-
(Boltz)]. This parameter is correlated to the original experimen-
tal Tolman Electronic Parameter (TEP)[15] that is defined as the
CO stretching frequency of the resultant LNi(CO)3 (L=mono-
dentate phosphine) complex.[16]

Results and Discussion

Design of the Multi-Threshold Algorithm

The multi-threshold algorithm presented here expands on the
previously reported threshold analysis method. As the first step,
the chemist identifies a cutoff in the dataset’s output (y-cut)
that will be used to classify ligands as active or inactive. The
cutoff is selected by the chemist to explore a given hypothesis.
As examples, one could select a certain conversion value with a
given catalyst loading as a possible y cutoff to interrogate
turnover or simply a natural division in the dataset such as the
conversion for the ligand-less control in a given reaction to
eliminate low-performing ligands. Each ligand in the dataset is
then classed as positive (active) or negative (inactive) based on
its experimental output and the y cutoff.

With the ligands sorted into their classes, the chemist also
must identify the relative importance of each class. For
applications in reaction optimization or ligand evaluation, a
simple ratio of ligands classified correctly by the algorithm to
total number of ligands (accuracy) is an insufficient metric as it
is generally more important to identify the maximum number
of active ligands (recall) than to exclude inactive ligands
(precision). Specifying the relative importance of these two
tasks is left to the user by allowing them to define the relative
importance or weight of each class in the algorithm (Figure 1C).
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The algorithm scans through all descriptors using single-
node decision trees, identifying descriptors and their values
that best separate the defined ligand classes. By default, the
algorithm prioritizes classifying active ligands correctly at the
expense of inactive ligands through a weighting function of ten
to one. This increases the resulting threshold’s recall score
(active points classified correctly/total number of points) and
minimizes the number of active ligands excluded from down-

stream processes. One method to visualize the results is a
confusion matrix wherein you can determine “true” positives,
“true” negatives, “false” positives, and “false” negatives as well
as the common metrics we evaluate (Figure 1C).

As the next step, we have expanded the algorithm to build
multi-node decision trees to determine combined reactivity
thresholds. In addition to the same user-controlled y-cutoff and
class weighting, the user can also specify how many sequential
nodes to evaluate. The hypothesis is that each sequential node
will provide more specificity as to which ligand features are
most important for catalytic performance. Similarly, it can also
increase classification accuracy, resulting in a more defined
search space for a ligand optimization campaign. Below we
analyze five previously reported[1] SMC reactions (Figure 2) as
case studies to demonstrate the utility of this method.

Examination of the General 2D Classification and Validation

Using the kraken monophosphine descriptor library[17] as the
feature source and yield as the experimental output, we
deployed the two-dimensional threshold or two-node decision
tree workflow on Ni-catalyzed SMC reaction datasets that
comprised different aryl chloride and aryl boronic acid pairings,
as shown in Figure 2. As a first step, we combined all of the
data from each reaction (90 ligands repeated over five
reactions, 450 reactions total) (Tables S1–S2) and deployed the
algorithm. As ligand-less reactivity is different for each reaction,

Figure 1. (A) Previous work identifying a reactivity threshold in minimum
buried volume of phosphine ligands for Ni-catalyzed Suzuki–Miyaura
Coupling reactions. (B) This work expanding the algorithm to identify
additional thresholds to further narrow down the active chemical space. (C)
A confusion matrix assists in the evaluation of classification algorithms.
Ligands are sorted into bins for those that are classified correctly as active
(true positives), classified incorrectly as active (false positives), classified
correctly as inactive (true negatives) and classified incorrectly as inactive
(false negatives). Accuracy is the ratio of those classified correctly to those
classified incorrectly. Precision represents the ratio of ligands predicted to be
active that are truly active. Recall is the ratio of ligands that are
experimentally active that were identified as active by the algorithm.

Figure 2. SMC reactions used as case studies for additional threshold
analysis.
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we set the y-cut at 10% after subtracting the ligand-less yield
from the reported yield. An example of a high performing
model for this dataset included the same Vbur(min) threshold
previously detected with the original single-node decision tree
in combination with a second threshold using Vmin(Boltz), which
is the minimum of the molecular electrostatic potential (MESP)
on the phosphorus atom that is Boltzmann averaged across all
energetically accessible conformers (Figure 3). The significance
of these features is supported by recent studies that also
identified them or related features as relevant to mono-
phosphine catalysis.[14,18]

Statistically, the two-node decision tree has a combined
classification accuracy of 81%, precision of 66%, and recall of
97% as compared to an accuracy of 66%, precision of 51%, and
recall of 98% with Vbur(min) alone (Figure S2). The double
threshold’s ability to exclude an additional subsection of
inactive ligands, shown by the increased accuracy and precision,
while maintaining strong identification of active ligands is of
particular note, as the primary drawback of the single threshold
alone was the high number of false positive ligand classifica-
tions.

We have previously investigated the implications of a
Vbur(min) threshold in terms of ligation state of the metal.[1] The
discovery that a Vmin(Boltz) threshold further classifies inactive
ligands is consistent with the original work of Tolman in
defining electronic features of phosphines as this parameter is
inversely correlated to the TEP. In the context of Ni-catalyzed
cross coupling reactions of aryl chlorides, the electronic
character of a phosphine ligand has been shown to impact the
reaction outcome in two primary ways: (1) more electron-rich

ligands displace cyclooctadiene from the Ni(0) precatalyst more
effectively than electron-deficient ligands, affording higher
concentrations of an active catalyst in situ.[19] Alternatively, (2)
more electron-rich phosphines accelerate oxidative addition
and prevent generation of catalytically inactive Ni(I) intermedi-
ates, which occurs via comproportionation if both Ni(0) and
Ni(II) are present in high concentration.[20] Previous mechanistic
studies have also implicated the formation of inactive μ2-OH
Ni(II) dimers as responsible for poor performance in Ni-catalyzed
SMC reactions.[21,22] Phosphine ligand electronics could also
impact the equilibrium generation of this inactive species.
Identification of the Vmin threshold is consistent with these
mechanistic scenarios.

While these two features appear to be orthogonal for the
purpose of classification, they are not entirely independent of
one another. This can be seen in the relative lack of ligands in
the top right quadrant representing ligands with a high
Vbur(min) and high Vmin(Boltz) in both a common screening set
(Figure 3) and in the full kraken library (Figure S11). One
possible reason for this observation is that the additional steric
bulk required for a high Vbur(min) generally includes more
donating alkyl/aryl groups, raising the Vmin(Boltz) as well.

To validate this general double threshold classification, we
screened additional ligands in reactions 2 and 4 (Figure 4). The
validation ligands were selected from a distribution of acces-
sible ligands predicted to contain both active and inactive
examples. An effort was made to distribute validation ligands
across the double-threshold space, although, as previously
mentioned, the upper-right quadrant contains fewer easily
accessible ligands than the rest and therefore received less

Figure 3. A general two-parameter threshold shown for each SMC reaction. Ligands are classified as active with yields over 10%. Ligands with a minimum
buried volume below 57.277 Å3 and an average minimum electrostatic potential below � 0.046 a.u. are predicted to be active.
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focus in our validation set. A total of 28 ligands were evaluated
for each reaction (Tables S8–S9).

The double thresholds validated well, with an average
classification accuracy of 83%, compared to training set
accuracy of 81%. Precision was improved in the validation sets,
with an average of 85%, 19% greater than the training set. This
may be in part due to the fact that the validation set was
collected independent of the HTE studies, on a benchtop scale
and with a slightly modified experimental procedure. For
phosphines repeated under both conditions, the outcomes
were well correlated but the benchtop conditions were ~15%
higher-yielding than the HTE conditions (see supporting
information).

Conversely, recall was somewhat worse in the validation of
reactions 2 and 4 at an average of 84.5%, with one active ligand
being misclassified by the Vmin(Boltz) threshold in reaction 2 and
two in reaction 4. This may be similarly impacted by the overall
higher yields of the validation set, but also demonstrates the
limitations of this classification method. Interestingly, P(4-FPh)3
appears to be an outlier in the Vmin threshold across multiple
substrate pairings, perhaps suggesting a distinct role for the
fluoro substituent rather than simply serving as an inductive
electron withdrawing group to the phosphorous donor.

It is important to note that this classification model is not
universally applicable. As the model was trained on Ni-catalyzed
SMC reactions using simple monophosphine ligands, it cannot
be assumed to classify other types of ligands or ligands used in
other reactions. For example, application of this model to a
series of previously reported Pd-catalyzed couplings yielded
poor predictive accuracy (Figures S4–S9). Similarly, all SMC
reactions used to train the model were performed under
constant conditions and departure from these conditions may
impact the chemistry in a manner that the model has not seen
and therefore is unequipped to predict.

Comparison to Traditional Chemical Space Representations

This multi-threshold analysis workflow is based on the concept
of classifying regions of chemical space as either active or
inactive as a function of multiple descriptors. Chemical space
can be defined as the subset of molecules that are relevant to a
certain application and it is interesting to consider the best way
to represent these chemical spaces.[23,24] For example, a chemical
space comprising all commercially available or easily synthesiz-
able monophosphine ligands is a relevant chemical space for a
ligand screening campaign. Chemical spaces like these are
often represented by molecular descriptor libraries (i. e., the
kraken database) where the Euclidean distance measured in
these descriptors can be used to define similarity of molecules,
with those most similar closer to one another and diverse
molecules further apart. The utility of this theoretical space is in
the assumption that molecules near each other will have similar
reactivity if the molecular descriptors capture the structure
function relationships appropriately.

An excellent and early example is the chemical space maps
for monophosphines originally reported by Tolman and later
elaborated by Fey wherein the ligand’s cone angle is plotted
against its TEP, thereby grouping ligands with similar steric and
electronic characteristics.[15,25] This can be converted into a
reactivity space by subsequently overlaying reaction output
(e.g., yield or another measurable) onto the map in the third
dimension, thereby identifying the characteristics of high-
performing ligands. With the development of more modern
physicochemical descriptors and computational methods,
chemical spaces can now be developed using a range of
descriptors. For example, with the kraken library, a chemical
space for monophosphine ligands can be defined by using the
190 parameters given for each ligand. While there is far more
information in a chemical space defined by the kraken library
than in the Tolman plots, it requires dimensionality reduction
techniques to visualize and interpret the high dimensional
space. Most commonly, algorithms like principal component

Figure 4. Double threshold validations of reactions 2 and 4.
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analysis (PCA)[26] or uniform manifold approximation and
projection (UMAP)[27] are utilized to build representations while
retaining the maximum amount of information about molecule
diversity and relative positioning (Figure 5A and 5B). PCA maps
of the kraken space have been used successfully for designing
diverse training sets[28] and defining the domain of applicability
of a statistical model.[7]

The primary drawback to dimensionality reduction of kraken
is the possible loss of specificity. While principal components of
a high-dimensional space are useful for generalizing the space,
many chemical applications of the space require the precision
that comes from the individual descriptors. Perhaps more
importantly, not every descriptor in the library will be relevant
to every reaction. The use of multi-threshold analysis provides a
bridge between the interpretability of a Tolman map and the

quantity of information in modern descriptor libraries. Instead
of trying to combine all available descriptors into a compre-
hensive space, this workflow identifies a finite number of
descriptors most relevant to a given reaction based on their
ability to divide data points into active and inactive categories.
In essence it produces a Tolman-like map tailored to a given
reaction – and perhaps will inspire designer screening sets for
future applications in late metal catalysis.

To illustrate these differences, plots of the Tolman map, PCA
and UMAP kraken space, and double threshold are shown side
by side as a function of yield in reaction 1 (Figure 5). In both
dimensionality reduction representations (5 A and 5B), the
potentially active ligands are spread across the chemical space
in a way that would make intuitive selection of high-activity
areas difficult for the chemist when screening ligands for a

Figure 5. Chemical space representation comparisons. (A) Reaction 1 plotted on PCA space of the kraken library with yields represented as bubble size and
color. Ligands in the kraken library not used in this study are shown as gray points. (B) Reaction 1 plotted on the UMAP representation of the kraken library.
(C) Traditional Tolman map of Reaction 1. Active ligands are grouped in the center, but not clearly separable from inactive ligands. (D) Two-dimensional
threshold space of Reaction 1. Active ligands are more separable from inactive ligands.
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reaction. In the UMAP particularly, the active ligands are
distributed among many clusters so that it would be difficult to
use the UMAP alone to identify areas of activity. By selecting a
few features that are most relevant to our chemistry of interest
though, we can build a chemical space representation that
more accurately reflects relevant ligand space for the SMC
reactions.

Conclusions

The multi-threshold analysis strategy presented here is a natural
expansion of the previously published threshold analysis. By
extending the number of descriptors in the classification
method, more information can be learned about both the
ligand effects on a given reaction and the suitability of untested
ligands for that reaction. This work specifically shows the
impact of phosphine electronics on the SMC reaction, in
addition to the ligand’s Vbur(min). Additionally, the double
threshold delineated the active chemical space for this reaction
in a way that traditional chemical space representations like
PCA and UMAP were unable to. By crafting a chemical space
tailored to the SMC reaction, we were able to identify additional
ligands that were likely to be active and increase the ratio of
hits in subsequent validation.

Supporting Information Summary
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Supporting Information.[29–34]
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By mapping Ni-catalyzed Suzuki-
Miyaura coupling yields onto a plot of
ligand buried volume and minimum
electrostatic potential, we identified
the area of monophosphine ligand
space best suited for this reaction.
Reported here is a generalizable
workflow for identifying physicochem-
ical descriptors that best classify the
chemical space for a given reaction.
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