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ABSTRACT: The development of automated experimental
facilities and the digitization of experimental data have introduced
numerous opportunities to radically advance chemical laboratories.
As many laboratory tasks involve predicting and understanding
previously unknown chemical relationships, machine learning
(ML) approaches trained on experimental data can substantially
accelerate the conventional design-build-test-learn process. This
outlook article aims to help chemists understand and begin to
adopt ML predictive models for a variety of laboratory tasks,
including experimental design, synthesis optimization, and
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materials characterization. Furthermore, this article introduces how artificial intelligence (AI) agents based on large language
models can help researchers acquire background knowledge in chemical or data science and accelerate various aspects of the
discovery process. We present three case studies in distinct areas to illustrate how ML models and Al agents can be leveraged to
reduce time-consuming experiments and manual data analysis. Finally, we highlight existing challenges that require continued
synergistic effort from both experimental and computational communities to address.

Bl INTRODUCTION

Laboratory experiments are one of the most critical conduits to
advance basic science and technology. In recent years, the field
of chemistry has experienced numerous significant milestones
in accelerating laboratory experiments with the introduction of
critical techniques, including laboratory automation, high-
performance computing, machine learning (ML) algorithms,
and artificial intelligence (AI) agents based on large language
models (LLMs). These advancements automate various
laboratory processes, ranging from synthesis and purification
to characterization and data analysis with minimal human
intervention, stimulating the transition toward self-driving
laboratories.' ™

Figure 1 shows a timeline of the introduction of selective
high-throughput experimentation (HTE)/lab automation
approaches, ML/AI algorithms, and LLMs over the past
three decades. Although automated and self-driving laborato-
ries are a relatively new concept, tools for tracking and
cataloging data for experimentation, such as laboratory
information management systems (LIMS)’ and electronic
laboratory notebooks (ELNs),'”"" were conceptualized 30—40
years ago. As data acquisition and processing became
increasingly multistep and time-consuming, automated and
parallel operations of HT experiments have evolved in different

2,12,13
areas.
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HTE has been developed through the standardization and
automation of laboratory workflows. In the 1980s, the
integration of robotics and analytical tools enabled high-
throughput screening in pharmaceutical research.'*'> The first
commercial LIMS was released around the same time.” Also,
the wide adoption of the 96-well plate in the early 1990s
established a practical standard for parallel assays and
screening, enabling reproducible experimentation in large
sample volumes.'® By the mid-1990s, the concept of ELN
began to emerge'” that enable researchers to capture their
scientific observations and laboratory data electronically. In the
early 2000s, automation expanded beyond screening, with
reports of end-to-end systems integrating synthesis, purifica-
tion, and characterization, marking a shift toward autonomous
materials discovery workflows.'® Additionally, the integration
of active learning and Bayesian optimization into the process of
Design of Experiments (DoE),"”*° and the emergence of lab
automation hardware companies improved the efficiency in
exploration of multidimensional parameter spaces. Finally,
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Figure 1. A brief timeline for the major developmental milestones of HTE/lab automation, ML/AI algorithms, and LLMs for the laboratories of

the future.

from the late 2010s, closed-loop, self-driving laboratories
emerged, in which machine-learning models iteratively
proposed and executed experiments with minimal human
intervention.”"*

The hardware of laboratory research has evolved along with
the computational tools capable of powering the feedback
loops that guide operations. Linear regression or linear models,
for instance, have been widely used as a tool of chemometrics
in 1980s.” Algorithms, such as backpropagation,24 one of the
most useful approaches to optimize artificial neural networks,”
were formed in the 1970s and formally introduced in the early
1980s for building an autoencoder, a fundamental approach to
represent latent information between inputs and outputs.*®
The 1990s saw the development of kernel methods, such as
support vector machines (SVMs),”” to encode similarities of
multidimensional inputs by kernels for classification. The early
2000s saw the formalization of ensemble tree techniques, such
as random forests, and probabilistic models, including
Gaussian processes, for nonlinear regression and classification
problems with small to moderate data sizes.”* > With the
arrival of massive data collections of text and images on the
Internet, different architectures of neural networks, such as
convolutional neural networks and recurrent neural networks,
were developed and evolved to be more flexible and accurate
for tasks such as image classification and segmentation.”>™*
Furthermore, probabilistic data reduction tools and generative
models, including variational autoencoder’® and denoising
diffusion probabilistic models®””® have been applied for
protein structure prediction and design.””*” The development
of neural network architectures**' and their profound impacts
in predicting protein structures*”**’ was awarded the 2024
Nobel Prizes in Physics and Chemistry, respectively. Trained
by simulated or experimental data, ML methods can be
routinely used as models for predicting untested inputs,***
which can facilitate operations in almost all areas of laboratory
science, including experimental design, synthesis optimization,
and materials characterization.*®*” However, significant
challenges remains for applying ML approaches in accelerating
laboratory research. For instance, the performance of the ML
approach is highly dependent on the quality and quantity of
the training data, and predictions may be unreliable when data

is scarce or systematically biased. Furthermore, some complex
ML models, such as neural networks and their variants, lack
interpretability and require manual tuning of hyperparameters.
Consequently, it is difficult for researchers to understand their
underlying chemical mechanisms and reliably use them in
different applications. Thus, high-quality data acquisition and
understanding different ML model assumptions are key
elements for successfully selecting and applying ML
approaches to accelerate chemical laboratory research.The

The development of high-
throughput experimentation and
data digitization has facilitated
the deployment of Al/ML ap-
proaches to replace labor-inten-
sive tasks in chemical laboratories
by automated design and dis-
covery processes.

development of high-throughput experimentation and data
digitization has facilitated the deployment of AI/ML
approaches to replace labor-intensive tasks in chemical
laboratories by automated design and discovery processes.
Over the past decade, LLMs based on transformer
architecture™ have gained tremendous attention across the
world for text generation, and have opened up a new era of
scientific research. The transformer, a neural network
architecture for training LLMs, for instance, inspired the
development of the Generative Pretrained Transformer
(GPT),**° and other LLM models, such as Claude, Gemini,
Llama, Qwen, and DeepSeek.Sl_55 The versatility of LLMs for
use in a variety of operations, ranging from literature summary
to computer code generation, reduces barriers to learning new
disciplines and facilitates interdisciplinary collaboration, which
has started to transform the paradigm in chemical laboratory
research.”®”” Despite the remarkable capabilities, LLMs also
have notable limitations. These models can produce
information that appears plausible yet is actually incorrect,
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Figure 3. (a—c) Data collection, processing, and featurization in chemical research.

and their performance remains inferior to domain experts
when addressing complex chemical problems that require
specialized knowledge. Additionally, LLM outputs exhibit
randomness, which necessitates careful validation.

Today, we stand at a pivotal moment for radically
transforming laboratory research and education. Traditional
chemical laboratories require significant human labor for
manual experimental designs, product screening, and data
analysis, which can be substantially accelerated by robotic
systems and Al agents, illustrated by the workflows in Figure 2.
The LLMs and ML predictive models can encode multiscale,
cross-disciplinary information, enabling scalable and accurate
prediction for a large number of test samples, thereby
substantially reducing the experimental cost and time.
However, many researchers, particularly in experimental
science, are unsure where to begin and what ML methods
they should use to minimize deployment effort and cost.
Although research tasks can be drastically different between
chemical science communities, many involve forming,
predicting, and understanding chemical relationships, i.e. f: x
— f(x), where x can be descriptors of molecules, chemicals,
experimental conditions or experimental outcomes, such as
microscopy images and scattering curves, and f is a function
that maps the input to system properties, such as conductivity,
chemical reaction yields, structural and mechanical properties
of the materials. Our modern world is built upon the discovery
of maps that accurately predict previously unknown relation-
ships. In the past, however, to discover the underlying
principles of a new system, chemists often relied on time-
consuming lab experiments and manual analysis of data in a
traditional lab.

Two critical advances have paved the way for data-driven
discovery of unknown relationships in chemical science. First,
experimental and simulation data have gradually become
digitalized, enabling the use of fundamental statistical learning
principles, such as Bayes’ theorem, to automatically update
rules from the status quo, or prior distribution, to a new

paradigm, or posterior distribution, by conditioning on new
data. Second, ML models have advanced over the years to
learn complex relationships from data, such as numerical
values, texts, and sequences, which can substantially reduce
time and computational cost for analyzing complex data.
Through the lens of these changes, this outlook article will
assess the current status of chemical laboratory research,
highlight existing gaps, and suggest a path for uniting
experimental and computational communities to accelerate
progress.

B ACCELERATING DATA COLLECTION AND
PROCESSING

Data Acquisition

Materials synthesis, characterization, and simulation are three
main sources of chemical data, shown in Figure 3(a), which
produce, for instance, molecular sequences, curves, images, and
videos (Figure 3(b)). The key goals are to accelerate and
automate data collection, processing, and featurization (Figure
3(c)) for guiding the process of learning chemical relation-
ships.

First, advances in automation are transforming the way
materials are synthesized and fabricated for downstream
analysis.”">*® Robotic platforms can be flexibly programmed
to perform a range of chemical reactions and formulations with
high precision and reproducibility, enabling parallel exper-
imentation in multiwell plate formats.”>” Flow chemistry
further extends automation by providing continuous control
over reaction conditions, incorporating in-line characterization
tools for real-time monitoring, and improving safety when
handling hazardous compounds.”””®> Once reactions are
complete, automated flash purification systems and preparative
high-performance liquid chromatography® streamline isolation
of small molecules and can be adapted to generate well-defined
polymer libraries with minimal human intervention.’*®®
Beyond producing physical samples, these automated plat-
forms generate distinct types of records, including molecular
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structures, reaction conditions, and experimental procedures,
which can be digitized into machine-compatible formats. For
instance, information on molecular structures can be converted
into SMILES and SELFIES strings.”° ® Furthermore, efforts
are being made to standardize exgerimental procedures, such
as the Open Reaction Database® and Chemical Description
Language,”® for training ML models to optimize synthesis and
reaction conditions. Commonly used methods to represent
discrete inputs include one-hot encoding, which expresses
discrete inputs by sequences of ‘0" and ‘I’, and molecular
fingerprints by numerical vectors.”'””® Encoding these
methods helps bridge synthesis outputs with machine learning
models that can analyze reaction trends and accelerate
discovery.

Second, a wide range of materials characterization tools,
including microscopy, rheology, spectrometry, scattering, and
spectroscopy, have been developed. These tools generate
images, time-series data, spectra, or other quantitative values in
chemical laboratories. Data processing tools, such as image
segmentation and particle tracking,”* have been developed for
extracting and linking data from microscopy images. These
data processing tools have been implemented into software
packages, such as Image] and Fiji,”>’® which contain easy-to-
use graphical user interfaces (GUIs), empowering users to view
and analyze large quantities of data, particularly useful for
biochemical research.”” The availability of a high volume of
labeled data enables the development of more accurate
supervised learning tools, such as Cellpose,”® which utilizes a
large database of labeled data to train U-Net,”” a convolutional
neural network for segmenting cells from microscopy images.
For more challenging scenarios, such as capturing optically
dense systems and fast dynamics, Fourier-based tools, e.g.
differential dynamic microscopy (DDM),””* remove the need
to segment particles to extract system information, e.g. mean
squared displacement of the particles, that determine the
mechanical properties (storage, loss modulus).””** Building
upon existing tools, it is possible to construct probabilistic
generative models and automated estimators for existing data
processing methods, such as by removing manual selection of
the Fourier range in DDM®’ which otherwise needs to be
chosen on a case-by-case manner.***’

Third, computational simulations from distinct space-time
length scales can provide scientific insights and a pathway to
explore chemical systems before conducting chemical experi-
ments.** ™" These simulations can reveal mechanistic insights
prior to experimentation but are often limited by large
computational and/or storage costs, and the need for accurate
model calibration, such as determining the form of observed
model parameters.”’ ~”* To address this challenge, Meta FAIR
has released Open Molecules 2025 (OMol25), a large-scale
open-source data set comprising over 100 million density
functional theory (DFT) calculations. It aims to provide high-
accuracy quantum chemical data to support the development
of machine learning models in molecular chemistry.”* The ?Past
decade witnessed the success of ML surrogate models”> ™" for
predicting outcomes of expensive simulations, such as the
potential energy, force field, and particle density at untested
inputs from nanoscale to bulk environment. For example,
neural network potentials and Gaussian process regression
have been used to accelerate molecular dynamics and DFT
calculations.""**'** Integrating ML-accelerated simulations
into laboratory workflows can reduce the number of
experiments in laboratories and guide synthesis toward the

most promising targets. Realizing this vision requires closer
collaboration between experimental and computational
communities, ensuring that simulation-informed predictions
are seamlessly incorporated into automated experimentation
and data-driven discovery workflows.

As the tools used to inform laboratory operations have
expanded and evolved, so has the need to record and manage
data from these systems. Software, such as LIMS and ELNs, is
capable of providing mechanisms for researchers to catalog and
record key experimental data in ways that are searchable,
labeled, uniquely identified, and accessible in machine-readable
formats. Additionally, digital representations of laboratory
protocols and associated data can simplify sharing and enable
greater collaboration between researchers. The information in
an ELN can be utilized to provide training data to update data-
driven methods for prediction and optimization. Because of
these advantages, physical notebooks of laboratories are
gradually being replaced by ELNs.' "% Furthermore, data
from an ELN can be stored in or connected to a LIMS to
enable comprehensive lab data management.'*°~'%® Together,
ELN and LIMS serve as tools that can foster open access data
for researchers to retrieve, review, and analyze.

Input Featurization and Visualization

As the input or descriptor x is not often available to learn
chemical relationships f(x), domain knowledge, cheminfor-
matics, and simulation are often used to generate feature sets
that capture underlying chemical structures. Representative
cheminformatics packages, including OpenBabel, RDKit, and
CDK, have been integrated with popular programming
languages (Table 1),'” which enables processing scientific
data to obtain meaningful input features for a wide range of
problems.

Table 1. Examples of Typical Cheminformatics Packages

Cheminformatics
package Languages Strength
OpenBabel C++, Python, Format conversion, Structure
Java search
RDKit C++, Python Molecular analysis, ML
CDK Java Computational chemistry,

Bioinformatics

Featurization of molecules and materials depends on
available data, and they are often problem-specific. For
applications involving categorical variables, such as catalyst
type or solvent selection, one-hot encoding can represent each
category as a binary vector. Yet this approach significantly
increases the feature dimension when dealing with a large
number of categories. To predict molecular properties,
molecular fingerprints are widely used to encode molecules
as fixed-length binary vectors, where each entry indicates the
presence of a specific substructure,''’ This approach can
rapidly screen similarity across large molecular libraries and it
is widely used in pharmaceutical virtual screening and drug
similarity searches. However, most molecular fingerprints
provide 2-dimensional structural similarity and do not capture
3-dimensional geometry or electronic effects. To accurately
capture 3-dimensional spatial configurations, electronic effects,
and physicochemical interactions, computational tools, such as
DEFT calculations and molecular dynamics simulations, provide
quantitative characterization of systems, such as partial charges
and activation energies, which can be used as descriptors or
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features."'''* A drawback of these computational models is
their high computational cost, and the assumptions of the
computational models may not be satisfied in some real-world
systems. To reduce the high computational cost, ML surrogate
models have been developed to predict system properties,
including potential energy, electronic density, and atomic
forces, from atomic features, such as inverse pairwise distances
between atomic coordinates.”®””!°%113711S Eyrthermore, the
discrepancies between the computational models and reality
can be modeled by Gaussian processes or their variants
through model calibration approaches.''*~"'*

Accelerated data collection, pro-
cessing, and featurization
through computational and data-
driven approaches enabled con-
structing advanced predictive
models that encode multiscale,
cross-disciplinary information to
rapidly screen huge input spaces
and substantially reduce exper-
imental cost and time.

Furthermore, exploratory data analysis tools are commonly
used for visualization and featurization.''” A common
challenging scenario for featurization involves high-dimen-
sional data, including curves, images, or videos, and discrete
inputs such as molecular sequences and graphs. Unsupervised
dimension reduction tools, such as principal component
analysis (PCA),"*" t-distributed stochastic neighbor embed-
ding (t-SNE),"”" uniform manifold projection and reduction
(UMAP),"** dynamic mode decomposition,*> autoencoders
and decoders,”>* are developed for extracting features of high-
dimensional data. These methods can be used to visualize the
high-dimensional data sets, and the vectors with a reduced
dimension can be input as the features for ML models. As
some information on the data sets will be inevitably lost in data
reduction processes,'>*'*° it is crucial to understand the
underlying assumptions of these data-driven approaches. For
instance, the linear subspace of PCA is equivalent to the
maximum marginal likelihood estimator of a probabilistic
latent factor model,'”” and one can examine whether the

probabilistic model is suitable to represent the data sets for
dimension reduction. Domain knowledge, such as physical and
chemical principles, can also be used to reduce the dimension
of data and improve the accuracy of noisy experimental data.
For instance, for classifying phases of block copolymers by
small-angle X-ray scattering (SAXS) data, using several features
relevant to the location, width, and curvature of the primary
peaks of the X-ray curves substantially improves the predictive
accuracy of ML models compared to using the entire curve as
input in ML models.”> Furthermore, scattering measurements
were used to estimate the micelle structure of block copolymer
solutions inversely,'”* and ML surrogate models can improve
the inverse estimation by learning the map from reduced-
dimensional features of micelle structural parameters to
scattering patterns.m9

The overarching goal of featurization is to inform the
similarity of chemical candidates in terms of their system
properties. A common challenge of featurization involves
discrete or categorical inputs, such as different types of atoms,
molecules, and chemical bonds. Compared with numerical
inputs, discrete inputs are more challenging to model due to
the lack of ordering between the inputs. ML models have
achieved success for predicting discrete sequences in some
applications, including transformers in LLMs that predict the
next text token given the context,*® and AlphaFold that maps
amino acids to protein spatial structure.*” These advanced ML
approaches are capable of learning latent features embedded in
a continuous space from a large number of samples. Large
opportunities exist to emulate the success in these examples in
other areas of chemical and materials sciences, by identifying
objective functions, constructing standardized data sets, and
developing novel ML architectures for discovering complex
relationships from high-dimensional discrete inputs or mixed
discrete and continuous inputs.

B LEARNING CHEMICAL RELATIONSHIPS BY
PREDICTIVE MODELS

Predictive Models

A predictive model, sometimes referred to as statistical
methods of chemometrics by chemists,"*" is an indispensable
component for learning chemical relationships. A common
goal is to predict system properties for a given input or
condition and quantify the uncertainty of the prediction, a
process typically involving training a data-driven predictive
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Figure 4. Data-driven predictive models for chemical research.
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model. We will start from regression, in which a continuous-
valued outcome is typically modeled by

y=f(x) +e (1)

where f(x) that maps the input vector x = (x, ..., xp)T to

system properties, and € is an independent noise, often
assumed to follow a zero-mean Gaussian distribution. We
introduce four classes of widely used predictive models listed
in Figure 4. All these models can be generalized to predict
categorical data and counts (often called classification), which
utilizes a link function to convert continuous numerical
predictions into probabilities. For example, a logistic
function'®" can map any real number to a probability value
between 0 and 1.

A linear model or linear regression is potentially the oldest
and most widely used benchmark model. In linear regression,

p
the relationship is assumed to be linear: f(x) = f, + X xlf@.,
j=1

where f is the coefficient of an intercept, x; and f3; are the jth
input variable and coefficient, respectively. Statistical theory
has been well established for estimating the coeflicient of linear
regression, along with their uncertainties, for noisy observa-
tions. Due to the assumption of linearity, linear regression
typically does not require large amounts of data to estimate the
parameters. However, when processing chemical measure-
ments (such as spectral data), extremely high dimensionality
and multicollinearity- of the data could cause traditional
regression approaches to fail. Partial least-squares regression
extends linear models to high-dimensional spaces,” which
integrates the dimension reduction idea of PCA. In addition to
prediction, linear methods offer a rigorous framework for
statistical inference, hypothesis testing, and variable selection
for automating model construction.'>*'** Therefore, though
the predictive power of a linear model is constrained by its
restrictive assumption, the interpretability and the ease of
fitting the linear model make it a suitable benchmark model to
estimate unknown chemical relationships.

Tree-based methods'** assume locally constant relationships

through partitioning the input variable or feature space:
M

f(x) = X culeer , where R, is an input subspace and ,, is a
m=1
fitting value of the subspace.135 Ensembles of trees, such as
random forests>>>*1¢ and gradient-boosted trees,”! construct
multiple trees for prediction or classification, and they are
widely used for their robustness and ability to model nonlinear
relationships. Random forests, for instance, construct multiple
decision trees in parallel, each trained on a bootstrap sample
generated by randomly sampling the observed input-output
pairs with replacement. Predictions are obtained by aggregat-
ing across all trees, via the majority vote for classification or
averaging for regression, which reduces variance and mitigating
overfitting. In contrast, gradient-boosted trees are built
sequentially, with each new tree focusing on correcting the
residuals or errors of the previous model. These methods
naturally handle both numerical and categorical inputs, are
insensitive to feature scaling, and are computationally efficient.
In addition, tree-based methods and ensembles of trees
provide feature importance metrics to quantify the contribu-
tion of each feature to prediction accuracy, which allows
researchers to identify key features that dominate the
properties of molecules or materials. Tree-based methods,

however, may not be efficient to capture smooth functional
relationships, as they are constrained by the assumptions that
outputs can be approximated by the ensembles of local
predictors of the input subspaces.

Gaussian process regression (GPR) utilizes a kernel function
to characterize the distance between the input space.”” Any
latent functions evaluated at n input values,

f= (f(x), ., f(x,))", are assumed to follow a multivariate

normal distribution in GPR: f ~ MN(u, X), where g is a n-
vector of mean often assumed to be constant, and Xisann X n
covariance matrix that often parametrized by a kernel function.
When f(-) is a continuous function, the two outcome values
will be similar if the associated two inputs are close to each
other. The distance between inputs is characterized by kernel
functions in GPR, to measure how close two sets of input
conditions, such as experimental conditions and molecular
descriptors, are to each other. Commonly used kernel
functions include power exponential kernels and Matérn
kernels,"*” and chemical information and physical symmetries
can be integrated into kernel functions for prediction.”"**
Conditioning on a set of observations, the predictive mean of
GPR provides point predictions, equivalent to solution of
kernel ridge regression,'*” and the predictive intervals of GPR
assess the confidence of a prediction, which identifies which
experimental conditions are worth further exploration.
Compared to linear models and tree-based models, Gaussian
processes often require less training data to learn nonlinear
relationships, when the underlying map is smooth. The high
efficiency with respect to small samples and availability of
uncertainty make the Gaussian process a suitable candidate for
predictions and design optimization in chemical studies.”
When the sample size is large, approximation methods'*”'*'
are often required for GPR due to the computational expense
that involves inversion of a large covariance matrix, yet the
predictive accuracy can deteriorate.

Artificial neural networks (NNs) are capable of learning
intricate patterns from large data sets by stacking multiple
layers of nonlinear transformation.'*>'** Each layer applies a
nonlinear activation function o(+) after a linear transformation
of the input with weight matrix W and bias vector b?,
allowing the network to approximate arbitrarily complex
functions by combining nonlinear building blocks. Mathemati-
cally, a feedforward NN can be represented as (f(x) =
FOfED(.AD(x))), where each layer follows fO(x("V) =
o(WxD" 4 bD) with o(-) acting on each element of the
input. The large number of parameters enables neural
networks to effectively learn nonlinear input-output mappings,
including those relationships that are difficult to model using
traditional methods. In recent years, many NN architec-
tures,'** such as convolutional neural networks>* and recurrent
neural networks,” have found great success, particularly for
image analysis such as ima%e classiﬁcation,145 segmentation,35
generation and inpainting.”** As the neural network models
often require a large amount of data to train, they are suitable
for certain scenarios, such as learning potential energy and
atomic forces from simulation,'*>'*® and segmenting cells from
microscopy images.”

Examples of the Python and R packages for the four classes
of predictive models are given in Table 2. These approaches
have been widely used for predicting experimental out-

10 or as a surrogate model for approximating
computationally expensive simulations.”® In practice, it is also
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Table 2. Examples of Python and R Packages for Predictive
Models

Predictive
models Python packages R packages

Linear scikit-learn'*” stats,"** glmnetlw

regression
Tree-based scikit-learn, XGBoost'*° randomijest,]%

models xgboost®
Gaussian scikit-learn, GPyTorch152 RobustGe;SP,153

processes GpGp™**

155 156 158 159
PyTorch, > TensorFlow, torch,>® keras'>

157
Keras™>

Neural networks

critical to have reliable uncertainty quantification of the
predictions, expressed as predictive intervals, for optimizin§
experimental designs'®" and controlling predictive error.'®
The predictive intervals of linear regression and Gaussian
processes are often used to quantify uncertainty of the
prediction, and they can be easily computed. The predictive
uncertainty of tree-based methods or ensembles of trees can be
computed through Bayesian inference, quantile regression, or
asymptotic analysis.'®>~'*® Assessing the uncertainty of neural
network approaches is still an open area of research, with
various methods been developed, including dropout, ensemble
samples, and conformal inference.'**~""°

Experimental Design Optimization

Leveraging the predictive power from simulation and ML
methods enables the efficient design of experiments to
understand an enormous space of molecules and materials. A
primary goal of eflicient materials design can be mathemati-
cally formulated as an optimization problem: x* = arg
max,g(x), where g(x) is the objective function, representing
the system property to be maximized or minimized (such as
reaction yield) for given input x (such as materials and
experimental conditions). DoE offers powerful tools for
exploring multivariate variable spaces, particularly for factor-
ized inputs, which can substantially accelerate the conventional
process to tune one variable at a time (OVAT).'”" As
experimental data contains noise, and design input space can
be enormous, applying traditional optimization methods such
as a quasi-Newton method'”” can be prohibitive, as they
typically require gradient information, noise-free outcomes of

the objective functions, and a relatively large number of
evaluations. To overcome these challenges, a predictive model,
such as a Gaussian process, can be used as a probabilistic proxy
to sequentially design the next experiments that give the most
valuable experimental outcome through an acquisition function
(a strategy that balances exploration of new regions with
exploitation of known good regions). This process is often
referred to as Bayesian optimization or active learning.'”> The
quantified uncertainty from the predictions is crucial to strike a
balance between exploration and exploitation for making better
predictions and improving the gain function, respectively.'”*

B FILLING THE GAPS BY LLM AGENTS

Advancing laboratory research involves a large set of tools and
techniques. The rise of LLMs, such as ChatGPT, offers a
promising path forward in connecting distinct domains to
accelerate learning and problem formulation processes, where
LLMs act as the agent at the interface between chemists and
data scientists, enabling researchers to quickly learn knowledge
in other disciplines. Figure 5 illustrates several potential
applications of LLMs, including generating computer code to
perform data analysis for chemists and helping computational
experts better understand concepts in chemistry which leads to
developing new computational tools for predicting polg_rmer
phases that will be introduced in the first case study.”> By
accelerating learning processes and reducing communication
barriers, LLMs can serve as helpful mediators to facilitate
collaborations between distinct communities.

Several recent studies have explored the use of LLMs in
chemical research, including assisting with coding and framing
scientific questions using chemical data.'”>™""” LLMs offer an
accessible entry point for novices lacking computational skills,
enabling efficient data processing, high-quality visualization,'”®
and generating computer codes with little prior programming
experience.'””'*” In surveys conducted after introducing LLMs
as learning tools, users reported notable improvements in their
coding skills, demonstrating that LLMs can accelerate learning
with minimal barriers.'”” Beyond basic use, LLMs can support
general chemistry problem-solving,'®" and they can be fine-
tuned for domain-specific tasks to further enhance output
quality."®* However, the responses from LLMs may not be
accurate, and they sometimes may hallucinate. Consequently,

(a) Chemist uses “agent” to (b)
learn computational skills

/

LLM facilitates skill progression
and knowledge integration

@ | have UV-Vis data in Excel crimental /. I'm joining a polymer
and want to plot it with Python. Q,*p '5'7/7,}] project. What exactly is a
How should | do that? R diblock copolymer?
S anformay.
T (\f\e«\ Yoy /I%O It's a polymer made of two
Of course! Follow these S o % % different blocks linked
steps: %” 35 (3 ® together—usually labeled A
1. Import the libraries you .0 & T, o and B.
;egd d Excel file with g % LLM % 2
. Read your Excel file witl < S A 1 @ Okay, and when I
¢ s 0 ent @ Q@ Y, people say
[Zelo r‘ead_gxcel( e .xlsx. ) © = & § (phase, what do they mean?
3. Plot using plt.plot() with v Q
proper labels and formatting... Programml.ng e s, s e
Here's the complete script: & Anva|y5|s to the nanostructure formed
AERe GENEES 65 B ) ized by the copolymer—like
synerglze lamellae, cylinders, or gyroids
\& Chemistry & Al

(c) Data scientist uses “agent”
to gain chemical expertise

- J)

Figure S. LLM agents facilitate cross-disciplinary collaboration and skill development in chemical research. (a) Example dialogue of chemists
acquiring Python programming skills for data analysis. (b) Skill progression framework from basic computational tools to advanced chemistry-Al
applications. (c) Example dialogue of LLM agents helping explain chemical concepts.
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LLMs cannot replace experts in many disciplines, and their
answers should be verified by domain experts.

Figure 6 provides examples of distinct expertise from
chemists and data scientists for building a collaborative

Request technical guidance Seek domain expertise
> <

[ = [N — 1

Chemists Data Scientists
‘ Domain Knowledge | L ‘ Problem Framing |
‘ Raw Data H Digitization | Agent ‘ Coding Skills |
‘ Chemical Intuition | ‘ Predictive Models |
‘ Synthesis & Characterization | Curriculum ‘ Optimization Algorithms |

Provide computational support  Explain chemistry concepts

Figure 6. Collaborative workflows between chemists and data
scientists facilitated by LLM agents.

workflow with the aid of LLM agents. Conversely, the
expertise can contribute to enhancing LLM agents, as LLMs
are essentially trained on text sequences, including dialogues,
publications, and computer code. To amplify the utilities of
LLMs, it is imperative to educate students and researchers on
framing the laboratory research tasks as properly defined
mathematical problems. Furthermore, As the LLM agents
largely remove the barriers of learning and programming, the
existing curriculum of chemical science can include more
components of statistical machine learning and data analysis
with the assistance of LLM agents.

LLM agents can serve as an
interface between chemists and
data scientists, to assist in a
variety of tasks, such as lowering
the barriers for accessing the
domain knowledge and per-
forming data analysis, but their
answers should be validated
carefully.

B CASE STUDIES

Physics-Informed Machine Learning for Automated Block
Copolymer Phase Identification

Nature has long mastered the synthesis and use of well-defined
macromolecules in biology. While this level of structural
specificity remains out of reach with most synthetic polymers,
significant progress has been made in preparing precise
polymers and developing new strate§1es to access well-defined
materials in high-throughput."®>™'®” When these methods
leverage common laboratory equipment that is simple to use
and broadly available, it can facilitate widespread use in
answering fundamental questions or carefully tailorin ng
structure—property relationships for a specific application.
For example, Hawker and co-workers have recently demon-
strated the use of automated chromatography to rapidly
generate block copolymer libraries.'*® Block copolymers are an
important class of materials that self-assemble into a rich array
of nanoscale morphologies.'® Key to applications, such as
advanced separation membranes, thermoplastic elastomers,
photonic crystals, microelectronics, and drug delivery, is the
ability to tune self-assembly through synthetic handles,
including block chemistry, block sequence, composition,
molecular weight, and dispersity using controlled polymer-
ization techniques.'”*”"" This long list of structural variables
illustrates the difficulty in navigating and controlling a
multidimensional design space. Traditional methods of
constructing even an incomplete block copolymer phase
diagram involve iterative synthesis followed by multiple
purification and isolation steps, which are time-consuming
and labor-intensive. The repetitive synthesis of multiple block
copolymers is also complicated by slight variations in reaction
conditions and/or purification that led to undesired differences
among samples and the presence of variable amounts of
homopolymer impurities.

This process can be substantially accelerated and automated
by leveraging the advances of techniques and predictive models
shown in Figure 7. For example, a library of 20 well-defined
diblock copolymers, spanning a broad range of compositions,
was readily prepared in 1 h from a single parent block
copolymer and used to prepare an enhanced phase
diagram.'**'?*'”> Because automated chromatography accel-
erates polymer library construction so significantly, it is
essential to pair it with more efficient methods for mapping
phase diagrams of diverse block copolymer chemistries. SAXS

Intensive Individual SAXS (ELUE L ER
synthesis / measurements identification

: >100x faster ; >10x faster
Block
copolymer
analysis

Accelerated
chromatography

High-throughput
SAXS analysis

Parent - library
16 parents - 300+ samples

i
-\

Rapid
synthesis

Zﬁ% 5

Automated
data collection

B Traditional Approach

B Automated Approach
5 Improved accuracy:

: >1000>< faster 1 30%-60% — 95%

Physics-informed
features

ML—asmsted

phase prediction Predictive model

+ Medium samples
+ Classification
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= . | < :
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Figure 7. Accelerated workflow for block copolymer phase identification comparing traditional (red) and automated (green) approaches. At each
decision point, automated approaches reduce time or improve accuracy compared to conventional methods. Adapted with permission from ref 65.
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Figure 8. Workflow for ML-enabled DNA-Agy discovery. Experimental DNA-Agy synthesis is performed on 10° DNA oligomers with different
sequences, and automated fluorimetry is used to generate training data for ML models. Chemical information guides the choice of the ML problem
definition and feature engineering, enabling predictive ML with limited experimental training data and interpretation of sequence-to-property
relationships learned by the model. Adapted with permission from ref 209. Copyright 2022 American Chemical Society.

can determine the polymer phases of these samples, yet it
requires an expert to manually identify the phase of the
polymer by interpreting SAXS curves, which is time-
consuming. This problem This problem was addressed by
BioPACIFIC MIP team through the development of a physics-
informed predictive model to automate polymer phase
identification from SAXS.”® Instead of inputting the entire
SAXS data into ML models for classifying polymer phases, the
authors extend the Kalman filter'”® for automated peak
detection to extract physics-informed morphological features
(PIMF), including the peak locations, width, and sharpness of
the peaks. These features are used to construct a random forest
model,®° suitable for classification problems with a small to
medium number of training samples. Identifying the phases of
hundreds of samples using the random forest model takes less
than a second on a desktop computer, and it can be executed
without the help of a computational expert.

The PIMF from SAXS curves substantially improved the
predictive accuracy, achieving around 95% out-of-sample
accuracy even for predicting new monomers with different
volume fractions not in the database for training ML models.®®
The substantial improvement comes from the integration of
polymer theory for featurization in machine learning
algorithms for determining polymer phases, which dramatically
reduces the dimension of the input space in predictions.
Furthermore, the maximum prediction probability from a
machine learning model, such as a random forest classifier, can
be used for quantifying the uncertainty of the prediction. The
assessed uncertainty enables reinspecting a small subset of the
samples with maximum prediction probability lower than a
prespecified threshold, to achieve near 100% accuracy for
polymer phase identification. Furthermore, the authors found 3
samples that were mislabeled by the expert but predicted
correctly by the ML model.

As polymer phase identification is a new problem for the
data scientists, the LLM was used to efliciently acquire
domain-specific knowledge about block copolymer behavior
and SAXS curves, as illustrated in Figure 5(c). This LLM-
assisted process accelerates the learning process required in
interdisciplinary collaboration. This example illustrates how
the integration of advanced experimental approaches, data-
driven predictive models, and domain expertise expedites the
characterization of structure—property relationships.

ML-Guided Experimental Screening for Discovery of
DNA-Stabilized Silver Nanocluster Fluorophores

DNA-stabilized silver nanoclusters (DNA-Agy) are ultrasmall
fluorescent nanoparticles with highly tunable properties. First
reported in 2004, DNA-Agy contains only 10 to 30 silver
atoms stabilized by one to three single-stranded DNA
oligomers.”’~""” DNA-Agy are attractive for their sequence-
tuned excitation and emission wavelengths that can be tuned
from blue to near-infrared (NIR) by the DNA template
sequence.”’”*”" Together with high quantum vyields and
extinction coefficients, these properties make DNA-Agy
promising emitters for biosensing, bioimaging, and nano-
photonics.”**** For example, emerging NIR-emitting DNA-
Agy could enable deep tissue imaging within the NIR tissue
transparency window, where biological tissues and fluids are
highly transparent to electromagnetic radiation.”**

The unique sequence-programmed nature of DNA-Agy
presents opportunities to engineer these emitters precisely
for specific applications, but DNA-Agy design is highly
challenged by the large number of possible templating DNA
sequences. Most sequences do not yield useful fluorescent
DNA-Agy, and the rules connecting DNA sequence to DNA-
Agy properties are complex.205 Moreover, very few X-ray
crystal structures of DNA-Agy have been reported, and first-
principles computational modeling is currently intractable for
DNA-Agy design.zoo’ﬂm_208

Copp, Bogdanov, and coauthors have developed approaches
that combine high-throughput experimental synthesis and
characterization with ML models’”™*"* to significantly
increase DNA-Agy design efficacy, using the workflow in
Figure 8. First, automated liquid handling is used to synthesize
DNA-Agy, on 10* different DNA oligomers in well plates, with
one oligomer sequence per well. The fluorescence spectrum of
each sample is then collected using automated fluorimetry with
a well plate reader; universal UV excitation via the nucleobases
is employed to excite all DNA-Agy with a single wavelength for
rapid fluorimetry. Finally, automated spectral fitting is used to
determine the spectral peak parameters for each DNA
sequence, thereby generating a large data library that connects
DNA sequences to DNA-Agy fluorescence.

This data set has been leveraged to train chemistry-informed
classification models, due to the quantized “magic number”
properties of nanoclusters, which naturally yield certain DNA-
Agy sizes.”” Chemically informed featurization has been
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Adapted with permission from ref 47. Copyright 2021 Springer Nature.

essential for ML classifiers to learn sequence-to-color relation-
ships, rather than using simple methods such as one-hot
encoding. For example, by featurizing DNA sequence using
nucleobase “staple” motifs inspired by DNA-Agy crystal
structure,””” support vector machines”” were trained to predict
the emission color class of a DNA-Agy given input DNA
sequence.””” To ensure that the ML models are effective for
predicting nanocluster properties, it is important to mitigate
overfitting and data imbalance issues commonly encountered
in experimental nanocluster data sets, which are often limited
in size. An imbalanced data set is one that contains relatively
few examples of some types of materials while containing more
examples of others, e.g., the histogram in Figure 8 panel 2 with
very few data points with wavelengths >900 nm as compared
to other wavelengths. ML models trained on imbalanced data
sets can perform poorly in regions where little training data is
available. Regularization techniques by adding a penalty term
to the loss function in estimating parameters are effective in
reducing overfitting in SVMs,>'#*!> and classifier ensembles
can be used together with data balancing strategies such as
subsampling to achieve predictive ML models with limited
experimental data sets. More recently, deep learning models
that perform automatic feature extraction and enable
continuous property design were introduced and demonstrated
for DNA-Agy.”'>""" Beyond prediction, ML models can
provide valuable chemical insights into how DNA sequence
influences DNA-Agy color through interpretability analysis
using feature analysis tools such as BorutaSHAP.”'
Experiments have verified the efficacy of ML-guided design
approaches for DNA-Agy. One of the most notable findings is
the discovery of NIR-emitting DNA-Agy, which are rare in
training data libraries, yet can be designed at a 12.3 times
enhanced success rate using ML-guided sequence selection.”””

This strategy illustrates the strength of integrating domain
knowledge (DNA-Agy chemistry) and ML algorithms to
facilitate the systematic discovery of materials and to enhance
fundamental chemical understanding in ways that are not
achievable using conventional methods.

Open-Source Bayesian Optimization Tool for Reaction
Development in Small-Molecule Organic Synthesis

Experimental optimization is ubiquitous in small-molecule
organic synthesis. These optimization problems are usually
high-dimensional, with reaction spaces defined by both
categorical variables (e.g, reagent and solvent identities) and
continuous variables (e.g., catalyst loading and temperature). A
synthetic chemist selects the initial reaction space to explore
based on successful conditions for similar reactions, mecha-
nistic reasoning, and chemical intuition, then iteratively
performs rounds of experiments with varied conditions to
seek the optimum. The most common conventional strategy
for exploration of this space, namely OVAT testing, has proven
effective, but is inefficient for exploring a large number of
variables and overlooks interactions between variables.

Bayesian optimization (BO) is well-suited to reaction
optimization, as it can suggest multiple experiments by
utilizing the quantified uncertainty of a predictive model in a
search space defined by both categorical and continuous
parameters, to ultimately identify the global optimum in a low-
data regime.*” In this setting, a successful BO algorithm could
substantially reduce the number of experiments necessary to
complete optimization.

In 2021, the Doyle group developed Experimental Design
via Bayesian Optimization (EDBO), an open-source Python
package for reaction development.*” The algorithm was tested
with featurization at three different levels of chemical
information: one-hot encoding, wherein the algorithm is
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given only the name of each reaction component and its binary
presence or absence in each set of conditions; Mordred
cheminformatics descriptors,”’” which provide basic informa-
tion about reaction components such as polarizability,
molecular weight, and number of aromatic rings; and
properties that require DFT calculation, such as the charges
at the coordinating atoms of potential ligands in their
minimum energy conformers, which are the most computa-
tionally expensive but also provide the richest information.
When tuned for each level of featurization using experimental
data from the chemical literature, the algorithm performed
similarly on average during the optimization process. However,
DFT-level encoding gave the most consistent results, with its
worst optimization trials still converging on a yield within 5%
of the optimum. DFT encoding was thus selected for use in the
remainder of the study; these results suggest that users with
similar search spaces may still find the algorithm eftective even
with only simple one-hot encoding. Additionally, optimizer
tuning revealed the best performance using a Gaussian process
surrogate model'” and parallel expected improvement™'® as
the acquisition function. This acquisition function suggests
batches of experiments that maximize expected utility until the
objective is optimized or the reaction space is explored
sufficiently that the probability of finding an improved
condition is low. This platform can be used in diverse settings
for any parametrizable reaction, including everyday bench-scale
experimentation and automated systems, making it widely
applicable for modern chemical laboratories.

To benchmark the EDBO algorithm’s performance against
the choices of human experts, Doyle and co-workers developed
a computer game that asked the player to find the highest-
yielding conditions for a Pd-catalyzed C—H arylation reaction
within a search space of 1,728 possible reaction conditions,
defined by three categorical variables (solvent, ligand, and base
identity) and two continuous variables (temperature and
concentration). To mimic a real laboratory, the resource
budget was limited: players chose S experiments to run “per
workday” and had 20 “workdays” to maximize the yield of the
reaction. The experimental outcomes supplied to the players
were real, with the yield data for every possible reaction being
collected beforehand via HTE.

For performance comparison, 50 expert chemists were asked
to play the benchmarking game and the EDBO algorithm was
asked to play it a corresponding S0 times (Figure 9a). While
human experts selected higher-yielding conditions on average
for the first round of experiments, the optimizer’s average
performance surpassed humans’ average performance in only
three “workdays” and typically achieved quantitative yield
within the first ten. In addition to EDBO’s greater efficiency, it
displays improved consistency: the optimizer identified the
optimal conditions every time it played the game, while many
human participants concluded they had identified the best
conditions before achieving quantitative yield and stopped
optimization early.

To demonstrate the platform’s ability to optimize real-world
reactions used in pharmaceutical development, Doyle and co-
workers applied EDBO to a test case of the Mitsunobu
reaction.”” This reaction was selected because it is used
frequently in synthesis, but tends to deliver moderate yields
under standard conditions. Methyl 3-bromo-1H-indole-6-
carboxylate and benzyl alcohol were chosen as substrates.
These substrates afforded a moderate 60% yield of the desired
product under the standard conditions used at Bristol Myers

Squibb. Seven total categorical and continuous reaction
parameters were selected to define the reaction space: the
identity and equivalents of the azadicarboxylate reagent, the
identity and equivalents of the phosphine reagent, the identity
and concentration of the solvent, and the temperature.
Chemical information about the reagents and solvent was
encoded in the form of DFT-computed descriptors. With 6
azadicarboxylates, 12 phosphines, 5 equivalencies for each
reagent, S solvents, 4 concentrations, and 5 temperatures, the
full reaction space consists of 180,000 possible combinations.

With the search space in hand, EDBO was initialized with
conditions chosen at random. Ten reactions were run in
parallel per experiment batch. The optimizer identified three
conditions that delivered the product in nearly quantitative
yield (99%) in only four rounds, totaling 40 experiments
(Figure 9b). EDBO’s ability to deliver a suite of distinct
optimized conditions is advantageous, as it enables chemists to
choose between several options based on additional factors
such as cost and operational convenience.

In 2022, the Doyle group expanded the utility of EDBO with
the release of EDBO+.”"” The upgraded platform accom-
modates multiobjective optimization and allows the user to
modify the reaction space during the optimization campaign.
These improvements adapt the system well to common use-
cases in organic synthesis, where multiple objectives (e.g.,
yield, selectivity, cost) are often in play and condition space is
routinely updated as the system is better understood. In
addition to its availability as an open-source software package,
EDBO+ can be used via a web-based application with a step-
by-step graphical user interface designed for users who have
little to no coding knowledge, which helps bridge the gap
between data scientists and experimental chemists. Further-
more, the integration of EDBO+ as a decision-making tool
with other data-driven technologies is already showing
promise: the year after its release, EDBO+ proved effective
for the optimization of a pyridinium salt synthesis via
continuous flow with semiautomated low-resolution data
processing,”” which is §aining popularity for automated
reaction development.”*">**

B SUMMARY AND OUTLOOK

Chemical lab research has been transformed by the availability
of large volumes of digital data generated by high-throughput
experimental facilities that are increasingly automated. These
data offer unique opportunities to develop new approaches and
algorithms to substantially accelerate the discovery process. A
key step to advance lab research is to formulate lab tasks as
mathematical questions, which is crucial to leveraging progress
in machine learning algorithms and Al tools. As many chemical
tasks involve identifying unknown relationships, a suitable
predictive model can open doors for numerous applications,
including accelerating experimental design, processing, and
optimization of material properties. To bridge the knowledge
gap between distinct areas, LLM agents can help chemical
scientists select suitable predictive models, provide standard
computer code, and assist computational experts in under-
standing domain knowledge for developing algorithms to
facilitate the discovery process. Furthermore, the answers from
LLM agents may inspire new ideas and facilitate the discovery
process. Yet LLM agents may generate inaccurate responses
and can fabricate or hallucinate information about nonexistent
theorems or references, which may lead to unsafe experiments,
such as providing access to synthesis information that poses
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security issues. Prompt engineering, including providing
contexts and examples, breaking large research questions into
smaller pieces, and integrating coscientists specializing in
different domains, can guide LLMs to generate more accurate
solutions.””> Some of these strategies require not only domain
knowledge, but also more understanding of data science. Thus,
integration of more statistical thinking and machine learning
concepts into the pedagogy of chemical science can assist
chemists in better interacting with LLM agents and ensuring
the correctness of LLM-derived solutions.

Overcoming several other common challenges can lead to
fruitful outcomes in advancing lab research. First, many
experimental characterization tools produce data that are, to
varying degrees, closed-source, meaning that access to the data
is restricted to an ecosystem supported only by the vendor.
Recent efforts have been made to facilitate connections
between closed-source vendor ecosystems and external
software (e.g., LIMS, ELN, or analysis tools) by gaining access
to application programming interfaces (APIs) directly from the
vendors. For example, a software development kit in a
common programming language (Python) was developed
and released to consume the API for the HTE instrument,
thereby providing greater access to system commands.’
Efforts to convert proprietary data into standard formats and
share them in an open-source repository can cultivate
community efforts. The availability of a standard format of
data has driven, for instance, the progress in LLMs and
accurate protein structure prediction tools, such as Alpha-
fold.*” Furthermore, there is a vast need to develop standard
software that can be easily plug-in into daily experimental tasks,
including automating data processing, making reliable
predictions of chemical relationships, generating interpretable
analysis of experiments, and suggesting solutions for
experimental challenges. These tools need to overcome several
challenges, including the limited number of training samples in
experiments, automating model training processes, enabling
uncertainty assessment, and assimilation to integrate different
types of data. On the other hand, a deeper understanding of
the assumptions behind these tools enables chemists to better
deploy them in suitable scenarios, identify the reasons when
ML tools do not work well, and resolve problems more quickly
when interacting with Al agents. Together, the joint efforts in
experimental and computational fields can substantially
accelerate the discovery process in chemical science.
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